Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial perchlorate reduction: rocket-fuelled metabolism

Key Points

  • Perchlorate (ClO4) is a soluble anion that comprises a central chlorine atom surrounded by four oxygen atoms. In the United States, perchlorate contamination of drinking water supplies is currently an issue of great public concern.

  • Perchlorate is principally a man-made compound and its presence as an environmental contaminant mainly results from the use of ammonium perchlorate in the munitions industry as an energetics booster or oxidant in solid rocket fuels. Owing to its chemical stability and high solubility, perchlorate is an excellent candidate for microbial-mediated bioremediation.

  • Dissimilatory (per)chlorate-reducing bacteria (DPRB) can grow by the anaerobic reductive dissimilation of (per)chlorate — perchlorate and chlorate (ClO3) — into chloride. More than 50 DPRB species are now in pure culture. These microorganisms have been identified in a wide range of environments and have a broad range of metabolic capabilities. They are phylogenetically diverse, with members in the α-, β-, γ- and ε-Proteobacteria. Two novel genera in the β-Proteobacteria, Dechloromonas and Azospira, are thought to be the dominant (per)chlorate-reducing bacteria in the environment.

  • Recent studies have yielded important data on the physiology, biochemistry and genetics of microbial (per)chlorate reduction. Additionally, information is now available on the environmental factors that influence the activity of DPRB. With these data to hand, new in situ and ex situ bioremediation strategies can be developed. The progress of these strategies can also now be monitored using the unique signature molecules and novel metabolic capabilities of the DPRB, including immunoprobes specific for chlorite dismutase and stable isotope analysis. The recent completion of the draft genome sequence of the (per)chlorate-reducing organism Dechloromonas aromatica strain RCB promises further advances in microbial perchlorate reduction.

Abstract

It is less than 7 years since perchlorate, a predominantly man-made toxic anion, was first identified as a significant water contaminant throughout the United States. Owing to its solubility and non-reactivity, bioremediation was targeted as the most promising solution for the problem of perchlorate contamination. Since 1996, concerted efforts have resulted in significant advances in our understanding of the microbiology, biochemistry and genetics of the microorganisms that are capable of reductively transforming perchlorate into innocuous chloride. The recent completion of the whole-genome sequence of the perchlorate-reducing microorganism Dechloromonas aromatica offers further insight into the evolution and regulation of this unique metabolic pathway. Several in situ and ex situ bioremediative processes have been engineered, and many monitoring tools that are based on immunology, molecular biology and stable isotope content are now available. As such, the rapid scientific response to this emerging contaminant offers great hope for its successful elimination from contaminated environments in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbial perchlorate reduction.
Figure 2: Phylogenetic distribution of (per)chlorate- and chlorate-reducing microorganisms.
Figure 3: Environmental factors affecting the activity of perchlorate-reducing bacteria.
Figure 4: Microbial chlorite dismutase.
Figure 5: Genomic organization of the chlorite dismutase gene cld, the perchlorate reductase operon and the chlorate reductase operon in selected isolates.
Figure 6: Stable isotope fractionation.

Similar content being viewed by others

References

  1. Waldman, P. Pentagon hid pollution report lawmakers say. Wall Street Journal (New York, 19 May 2003).

  2. Renner, R. Perchlorate regulation faces further delay. Environ. Sci. Technol. 37, 166A–167A (2003).

    Article  PubMed  Google Scholar 

  3. Hogue, C. Rocket-fueled river. Chem. Eng. News 81, 37–46 (2003). A comprehensive overview of the extent of perchlorate contamination in the southwestern United States.

    Article  Google Scholar 

  4. Urbansky, E. T. Quantitation of perchlorate ion: practices and advances applied to the analysis of common matrices. Crit. Rev. Anal. Chem. 30, 311–343 (2000). An in-depth review of the analytical methods available for the analysis of perchlorate in environmental samples by the leading practitioner in the field.

    Article  CAS  Google Scholar 

  5. Orris, G. J., Harvey, G. J., Tsui, D. T. & Eldrige, J. E. Open-File Report 03–314 US Geological Survey, Tucson, Arizona (2003).

  6. Collette, T. W. et al. Analysis of hydroponic fertilizer matrixes for perchlorate: comparison of analytical techniques. Analyst 128, 88–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Christen, K. EPA perchlorate decision takes many by surprise. Environ. Sci. Technol. 37, 347A–348A (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Motzer, W. E. Perchlorate: problems, detection, and solutions. Environ. Forensics 2, 301–311 (2001). A comprehensive review of the extent of perchlorate contamination in the United States and the issues associated with this contaminant.

    Article  CAS  Google Scholar 

  9. Kirk, A. B., Smith, E. E., Tian, K., Anderson, T. A. & Dasgupta, P. K. Perchlorate in milk. Environ. Sci. Technol. 37, 4979–4981 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Stanbury, J. B. & Wyngaarden, J. B. Effect of perchlorate on the human thyroid gland. Metabolism 1, 533–539 (1952).

    CAS  PubMed  Google Scholar 

  11. Wolff, J. Perchlorate and the thyroid gland. Pharmacol. Rev. 50, 89–105 (1998).

    CAS  PubMed  Google Scholar 

  12. Clark, J. J. J. in Perchlorate in the Environment (ed. Urbansky, E. T.) 15–30 (Kluwer Academic/Plenum, New York, 2000).

    Book  Google Scholar 

  13. Howdeshell, K. L. A model of the development of the brain as a construct of the thyroid system. Environ. Health Perspect. 110, 337–348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Porterfield, S. P. Vulnerabilities of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Environ. Health Perspect. 102, 125–130 (1994).

    PubMed  PubMed Central  Google Scholar 

  15. Haddow, J. E. et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341, 549–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Renner, R. Perchlorate-tainted wells spur government action. Environ. Sci. Technol. 32, 210A (1998).

    Article  CAS  PubMed  Google Scholar 

  17. US Environmental Protection Agency. Drinking water contaminant candidate list Doc No. EPA/600/F–98/002. (Washington DC, 1998).

  18. Urbansky, E. T. Perchlorate chemistry: implications for analysis and remediation. Bioremed. J. 2, 81–95 (1998). An older review that comprehensively outlines the chemistry and reactivity of perchlorate.

    Article  CAS  Google Scholar 

  19. Urbansky, E. T. Perchlorate as an environmental contaminant. Environ. Sci. Pollut. Res. 9, 187–192 (2002).

    Article  CAS  Google Scholar 

  20. Wallace, W., Ward, T., Breen, A. & Attaway, H. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol. 16, 68–72 (1996).

    Article  CAS  Google Scholar 

  21. Ericksen, G. E. The Chilean nitrate deposits. Am. Sci. 71, 366–374 (1983).

    Google Scholar 

  22. Schilt, A. A. Perchloric Acid and Perchlorates (The G. Fredrick Smith Chemical Comany, Ohio, 1979).

    Google Scholar 

  23. Urbansky, E. T., Brown, S. K., Magnusson, M. L. & Kelty, C. A. Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ. Pollut. 112, 299–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. van Aken, B. & Schnoor, J. L. Evidence of perchlorate (ClO4) reduction in plant tissues (Poplar tree) using radio-labeled 36ClO4. Environ. Sci. Technol. 36, 2783–2788 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Susarla, S., Bacchus, T., Harvey, G. J. & McCutcheon, S. C. Phytotransformations of perchlorate contaminated waters. Environ. Technol. 21, 1055–1065 (2000).

    Article  CAS  Google Scholar 

  26. Ellington, J. J. et al. Determination of perchlorate in tobacco plants and tobacco products. Environ. Sci. Technol. 35, 3213–3218 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Urbansky, E. T. in Chemistry and Technology of Explosives 602–620 (Pergamon Press, Oxford, 1988).

    Google Scholar 

  28. Roote, D. S. Technology status report perchlorate treatment technologies first edition. Doc No. DAAE30-98-C-1050 (Ground-Water Remediation Technologies Analysis Center, Pittsburgh, 2001).

  29. Urbansky, E. T. & Brown, S. K. Perchlorate retention and mobility in soils. J. Environ. Monit. 5, 455–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, J., Song, Y., Min, B., Steinberg, L. & Logan, B. E. Microbial degradation of perchlorate: principles and applications. Environ. Eng. Sci. 20, 405–422 (2003).

    Article  CAS  Google Scholar 

  31. Aslander, A. Experiments on the eradication of Canada Thistle, Cirsium arvense, with chlorates and other herbicides. J. Agric. Res. 36, 915 (1928).

    CAS  Google Scholar 

  32. Coates, J. D., Michaelidou, U., O'Connor, S. M., Bruce, R. A. & Achenbach, L. A. in Perchlorate in the Environment (ed. Urbansky, E. T.) 257–270 (Kluwer Academic/Plenum, New York, 2000).

    Book  Google Scholar 

  33. Bryan, E. H. & Rohlich, G. A. Biological reduction of sodium chlorate as applied to measurement of sewage BOD. Sewage Ind. Waste 26, 1315–1324 (1954).

    CAS  Google Scholar 

  34. Bryan, E. H. Application of the chlorate BOD procedure to routine measurement of wastewater strength. J. Wat. Pollut. Cont. Fed. 38, 1350–1362 (1966).

    CAS  Google Scholar 

  35. Hackenthal, E., Mannheim, W., Hackenthal, R. & Becher, R. Die reduktion von perchlorat durch bakterien. I. Untersucungen an intaken zellen. Biochem. Pharmacol. 13, 195–206 (1964).

    Article  CAS  PubMed  Google Scholar 

  36. Hackenthal, E. Die reduktion von perchlorat durch bacterien. II. Die identitat der nitratreduktase und des perchlorat reduzierenden enzyms aus B. cereus. Biochem. Pharm. 14, 1313–1324 (1965).

    Article  CAS  PubMed  Google Scholar 

  37. de Groot, G. N. & Stouthamer, A. H. Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate resistant mutants. Arch. Microbiol. 66, 220–233 (1969).

    CAS  Google Scholar 

  38. Roldan, M. D., Reyes, F., Moreno-Vivian, C. & Castillo, F. Chlorate and nitrate reduction in the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Curr. Microbiol. 29, 241–245 (1994).

    Article  CAS  Google Scholar 

  39. Stewart, V. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52, 190–232 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Neidhardt, F. C. et al. (eds) Escherichia coli and Salmonella — Cellular and Molecular Biology (ASM Press, Washington DC, 1996).

    Google Scholar 

  41. Coates, J. D. et al. The ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 65 5234–5241 (1999). The first demonstration of the diversity and ubiquitous nature of bacteria capable of microbial (per)chlorate reduction

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bruce, R. A., Achenbach, L. A. & Coates, J. D. Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ. Microbiol. 1, 319–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Michaelidou, U., Achenbach, L. A. & Coates, J. D. in Perchlorate in the Environment (ed. Urbansky, E. T.) 271–283 (Kluwer Academic/Plenum, New York, 2000).

    Book  Google Scholar 

  44. Romanenko, V. I., Korenkov, V. N. & Kuznetsov, S. I. Bacterial decomposition of ammonium perchlorate. Mikrobiologiya 45, 204–209 (1976).

    CAS  Google Scholar 

  45. Stepanyuk, V. et al. New species of the Acinetobacter genus Acinetobacter thermotoleranticus sp. nov. Mikrobiologiya 61, 347–356 (1992).

    Google Scholar 

  46. Malmqvist, A. et al. Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. System. Appl. Microbiol. 17, 58–64 (1994). The first complete description of an organism capable of growth on chlorate and not perchlorate.

    Article  Google Scholar 

  47. Rikken, G., Kroon, A. & van Ginkel, C. Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl. Microbiol. Biotechnol. 45, 420–426 (1996). One of the seminal papers on microbial perchlorate reduction describing a new isolate and the reductive pathway utilized.

    Article  CAS  Google Scholar 

  48. Coates, J. D. et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411, 1039–1043 (2001). The first isolation and characterization of an organism of any type capable of anaerobic degradation of benzene.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, H. S., Bruns, M. A. & Logan, B. E. Chemolithoautotrophic perchlorate reduction by a novel hydrogen-oxidizing bacterium. Environ. Microbiol. 4, 570–576 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Herman, D. C. & Frankenberger, W. T. Jr. Bacterial reduction of perchlorate and nitrate in water. J. Environ. Qual. 28, 1018–1024 (1999).

    Article  CAS  Google Scholar 

  51. Okeke, B. C., Giblin, T. & Frankenberger, W. T. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut. 118, 357–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Waller, A. S., Cox, E. E. & Edwards, E. A. Perchlorate-reducing microorganisms isolated from contaminated sites. Environ. Microbiol. 6, 517–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Coates, J. D., Cole, K. A., Chakraborty, R., O'Connor, S. M. & Achenbach, L. A. The diversity and ubiquity of bacteria utilizing humic substances as an electron donor for anaerobic respiration. Appl. Environ. Microbiol. 68, 2445–2452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chaudhuri, S. K., Lack, J. G. & Coates, J. D. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 67, 2844–2848 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lack, J. G., Chaudhuri, S. K., Chakraborty, R., Achenbach, L. A. & Coates, J. D. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microb. Ecol. 43, 424–431 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Lack, J. G. et al. Immobilization of radionuclides and heavy metals through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 68, 2704–2710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Achenbach, L. A., Bruce, R. A., Michaelidou, U. & Coates, J. D. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Microbiol. 51, 527–533 (2001). The original description of the two dominant species of (per)chlorate-reducing species found in the environment.

    Article  CAS  PubMed  Google Scholar 

  58. Achenbach, L. A. & Coates, J. D. Disparity between bacterial phylogeny and physiology. ASM News 66, 714–716 (2000).

    Google Scholar 

  59. Cummings, D. E., Caccavo F. Jr, Spring, S. & Rosenzweig, R. F. Ferribacterium limneticum gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch. Microbiol. 171, 183–188 (1999).

    Article  CAS  Google Scholar 

  60. Tan, Z. & Reinhold-Hurek, B. Dechlorosoma suillum Achenbach et al. 2001 is a later subjective synonym of Azospira oryzae Reinhold-Hurek and Hurek 2000. Int. J. Syst. Evol. Microbiol. 53, 1139–1142 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Coates, J. D., Bruce, R. A., Patrick, J. A. & Achenbach, L. A. Hydrocarbon bioremediative potential of (per)chlorate-reducing bacteria. Bioremed. J. 3, 323–334 (1999).

    Article  CAS  Google Scholar 

  62. Bender, K. S., Rice, M. R., Fugate, W. H., Coates, J. D. & Achenbach, L. A. Metabolic primers for the detection of (per)chlorate-reducing bacteria in the environment. Appl. Environ. Microbiol. (in the press).

  63. Logan, B. E. et al. Kinetics of perchlorate- and chlorate-respiring bacteria. Appl. Environ. Microbiol 67, 2499–2506 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Coates, J. D. in Bergey's Manual of Systematic Bacteriology (eds Brenner, D., Krieg, N., Staley, J. & Garrity, G.) (Springer–Verlag, New York, in the press).

  65. Bender, K. S., O'Connor, S. M., Chakraborty, R., Coates, J. D. & Achenbach, L. A. The chlorite dismutase gene of Dechloromonas agitata strain CKB: sequencing, transcriptional analysis and its use as a metabolic probe. Appl. Environ. Microbiol. 68, 4820–4826 (2002). The first description of the chlorite dismutase gene from an organism capable of both perchlorate and chlorate reduction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chaudhuri, S. K., O'Connor, S. M., Gustavson, R. L., Achenbach, L. A. & Coates, J. D. Environmental factors that control microbial perchlorate reduction. Appl. Environ. Microbiol. 68, 4425–4430 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pollock, J., Achenbach, L. A. & Coates, J. D. Potential for in-situ bioremediation of perchlorate contaminated environments. Appl. Environ. Microbiol. (in the press).

  68. Logan, B. E., Wu, J. & Unz, R. F. Biological perchlorate reduction in high-salinity solutions. Wat. Res. 35, 3034–3038 (2001).

    Article  CAS  Google Scholar 

  69. Bruce, R. A. MSc. Thesis (Department of Microbiology, Southern Illinois University, Carbondale, 1999).

    Google Scholar 

  70. Kengen, S. W. M., Rikken, G. B., Hagen, W. R., Van Ginkel, C. G. & Stams, A. J. M. Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J. Bacteriol. 181, 6706–6711 (1999). The first purification and description of the perchlorate reductase enzyme.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. van Ginkel, C., Rikken, G., Kroon, A. & Kengen, S. Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol. 166, 321–326 (1996). The first description of the chlorite dismutase enzyme, which, in reference 41, was subsequently shown to be common to all perchlorate-reducing bacteria.

    Article  CAS  PubMed  Google Scholar 

  72. Stenklo, K., Thorell, H. D., Bergius, H., Aasa, R. & Nilsson, T. Chlorite dismutase from Ideonella dechloratans. J. Biol. Inorgan. Chem. 6, 601–607 (2001).

    Article  CAS  Google Scholar 

  73. O'Connor, S. M. & Coates, J. D. A universal immuno-probe for (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 68, 3108–3113 (2002). The first demonstration of the functional expression and highly conserved nature of the chlorite dismutase of perchlorate-reducing bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thorell, H. D., Karlsson, J., Portelius, E. & Nilsson, T. Cloning, characterisation, and expression of a novel gene encoding chlorite dismutase from Ideonella dechloratans. Biochim. Biophys. Acta 1577, 445–451 (2002). The first description of the chlorite dismutase gene from a chlorate-reducing organism.

    Article  CAS  PubMed  Google Scholar 

  75. Xu, J. L., Trimble, J. J., Steinberg, L. & Logan, B. E. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Water Res. 38, 673–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Bender, K. S., Chakraborty, R., Belchik, S. M., Coates, J. D. & Achenbach, L. A. Sequencing and transcriptional analysis of a perchlorate reductase gene from Dechloromonas agitata. Appl. Environ. Microbiol. (in the press).

  77. Wolterink, A. F. W. M., Jonker, A. B., Kengen, S. W. M. & Stams, A. J. M. Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int. J. Syst. Evol. Microbiol. 52, 2183–2190 (2002).

    CAS  PubMed  Google Scholar 

  78. Danielsson-Thorell, H., Stenklo, K., Karlsson, J. & Nilsson, T. A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl. Environ. Microbiol. 69, 5585–5592 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  79. Wolterink, A. F. W. M. et al. Characterization of the chlorate reductase from Pseudomonas chloritidismutans. J. Bacteriol. 185, 3210–3213 (2003). The first description of the chlorate reductase enzyme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coleman, M. L., Ader, M., Chaudhuri, S. & Coates, J. D. Microbial isotopic fractionation of perchlorate chlorine. Appl. Environ. Microbiol. 69, 4997–5000 (2003). The first demonstration that perchlorate-reducing bacteria can fractionate chlorine stable isotopes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Woese, C. R. in The Prokaryotes (eds Balows, A., Truper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 3–18 (Springer–Verlag, New York, 1992).

    Google Scholar 

  82. Coates, J. D. & Achenbach, L. A. in Manual of Environmental Microbiology (eds Hurst, C. J., Knudsen, G. R., McInerney, M. J., Stetzenbach, L. D. & Walter, M. W.) 719–727 (ASM Press, Washington DC, 2001).

    Google Scholar 

  83. Bailey, N. J. L., Krouse, H. R., Evans, C. R. & Rogers, M. A. Alteration of crude oil by waters and bacteria — evidence from geochemical and isotope studies. Am. Assoc. Petrol. Geol. Bull. 57, 1276 (1973).

    CAS  Google Scholar 

  84. Ku, T. C. W., Walter, L. M., Coleman, M. L., Blake, R. E. & Martini, A. M. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim. Cosmochim. Acta 63, 2529–2546 (1999).

    Article  CAS  Google Scholar 

  85. Nissenbaum, A., Presley, B. J. & Kaplan, I. R. Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia, I, Chemical and isotopic changes in major components of interstitial water. Geochim. Cosmochim. Acta 36, 1007–1027 (1972).

    Article  CAS  Google Scholar 

  86. Jendrzejewski, N., Eggenkamp, H. G. M. & Coleman, M. L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems. Appl. Geochem. 16, 1021–1031 (2001).

    Article  CAS  Google Scholar 

  87. Ahad, J. M. E., Lollar, B. S., Edwards, E. A., Slater, G. F. & Sleep, B. E. Carbon isotope fractionation during anaerobic biodegradation of toluene: implications for intrinsic bioremediation. Environ. Sci. Technol. 34, 892–896 (2000).

    Article  CAS  Google Scholar 

  88. Cloud, P. E., Friedman, I. & Sesler, F. D. Microbiological fractionation of the hydrogen isotopes. Science 127, 1394 (1958).

    Article  CAS  Google Scholar 

  89. Hall, J. A., Kalin, R. M., Larkin, M. J., Allen, C. C. R. & Harper, D. B. Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria. Org. Geochem. 30, 801–811 (1999).

    Article  CAS  Google Scholar 

  90. Harrison, A. G. & Thode, H. G. Mechanism of the bacterial fractionation of sulphate from isotope fractionation studies. Faraday Soc. Trans. 54, 84 (1957).

    Article  Google Scholar 

  91. Krichevsky, M. I., Sesler, F. D., Friedman, I. & Newell, M. Deuterium fractionation during molecular H2 formation in a marine pseudomonad. J. Mar. Biol 236, 2520 (1961).

    CAS  Google Scholar 

  92. Morasch, B., Richnow, H., Schink, B. & Meckenstock, R. Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. Appl. Environ. Microbiol. 67, 4842–4849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sturchio, N. C., Hatzinger, P. B., Arkins, M., Suh, C. & Heraty, L. Chlorine isotope fractionation during microbial reduction of perchlorate. Environ. Sci. Technol. 37, 3859–3863 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Reinhold–Hurek, B. & Hurek, T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 649–659 (2000).

    Article  PubMed  Google Scholar 

  95. Engelhard, M., Hurek, T. & Reinhold–Hurek, B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ. Microbiol. 2, 131–141 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research on the microbial reduction of perchlorate and application of these microorganisms to the bioremediation of perchlorate, heavy metals, radionucleotides and hydrocarbons in the laboratories of J.D.C. and L.A.A. is supported by independent grants from the US Department of Defence SERDP program and the US Department of Energy NABIR program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Coates.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

John D. Coates' laboratory

Laurie A. Achenbach's laboratory

Environmental Working Group Suspect Salads Report

Perchlorate Environmental Contamination: Toxicological Review and Risk Characterization

Dechloromonas draft genome sequence

Glossary

HYPOTHYROIDISM

The most common thyroid disorder and one in which the thyroid is underactive.

PROVISIONAL ACTION LEVEL

A contamination level set by each state in the United States that is used to protect consumers until a federal maxiumium concentration level is defined by the US EPA.

CONTAMINANT CANDIDATE LIST

The primary source of priority contaminants for evaluation by the EPA's drinking water programme; updated every five years.

HYDROPONIC GROWTH

Growing plants in water containing dissolved nutrients instead of soil.

REVERSE OSMOSIS

A process in which purified water is obtained from a salt solution.

MAGNETOTACTIC

Magnetotactic bacteria are motile, mostly aquatic prokaryotes that can swim along geomagnetic field lines.

MAGNETOSOMES

Intracellular structures in magnetotactic bacteria that contain magnetic mineral crystals.

SLOT-BLOT

A technique that is used to determine whether an organism possesses a specific gene of interest. Genomic DNA is extracted and transferred to a solid membrane with a slot-array apparatus. After denaturation of the DNA, the membrane is hybridized with a labelled probe that targets a specific DNA sequence.

CLADE

A group of organisms consisting of a single species and its descendents.

MOST PROBABLE NUMBER

A method that uses dilution cultures to determine the approximate number of viable cells. It is useful when samples contain too few organisms for agar plates to be used or when organisms will not grow on agar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, J., Achenbach, L. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2, 569–580 (2004). https://doi.org/10.1038/nrmicro926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing