Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The mirror mechanism: a basic principle of brain function

Key Points

  • The mirror mechanism is a basic brain mechanism that transforms sensory representations of others' behaviour into one's own motor or visceromotor representations concerning that behaviour. According to its location, it may fulfil a range of cognitive functions, including action and emotion understanding.

  • A large number of studies in monkeys demonstrate that premotor and parietal mirror neurons encode action goals rather than mere bodily movements. Similar results have been found in humans.

  • Different lines of evidence support the claim that the mirror mechanism might contribute to understanding others' actions, facilitating the identification of the outcome to which those actions are directed.

  • The mirror mechanism is also involved in others' emotion processing. Brain-imaging and lesion studies indicate that identifying others' emotions may depend on one's own visceromotor processes and representations concerning those emotions.

  • Recent studies suggest that the mirror mechanism may contribute to understanding the vitality forms that characterize others' actions by transforming the sensory information concerning others' vitality forms into motor representations of those forms.

  • Mirror-based understanding has been defined as an 'understanding from the inside' because it provides a route to knowledge of others, which can be taken by capitalizing on one's own motor or visceromotor representations. This also suggests that how people experience their own actions, emotions and vitality forms may share a core phenomenal aspect with how people experience the same actions, emotions and vitality forms when observing others displaying them.

Abstract

The mirror mechanism is a basic brain mechanism that transforms sensory representations of others' behaviour into one's own motor or visceromotor representations concerning that behaviour. According to its location in the brain, it may fulfil a range of cognitive functions, including action and emotion understanding. In each case, it may enable a route to knowledge of others' behaviour, which mainly depends on one's own motor or visceromotor representations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The monkey parietofrontal mirror network for hand-grasping actions.
Figure 2: The human grasping-observation network.
Figure 3: Insular region encoding vitality forms.
Figure 4: Insular connections with the parietofrontal grasping circuit in the monkey.

Similar content being viewed by others

References

  1. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–180 (1992).

    CAS  PubMed  Google Scholar 

  2. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

    PubMed  Google Scholar 

  3. Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3, 131–141 (1996).

    CAS  Google Scholar 

  4. Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M. & Rozzi, S. Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol. Rev. 94, 655–706 (2014). This rich, exhaustive review describes the functional organization of the cortical motor system and the goal-directed mirror mechanism in monkeys and humans.

    PubMed  Google Scholar 

  5. Keysers, C. & Gazzola, V. Expanding the mirror: vicarious activity for action, emotion and sensation. Curr. Opin. Neurobiol. 19, 666–671 (2009).

    CAS  PubMed  Google Scholar 

  6. Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G. & Orban, G. A. Observing others: multiple action representation in the frontal lobe. Science 310, 332–336 (2005).

    CAS  PubMed  Google Scholar 

  7. Nelissen, K. et al. Action observation circuits in the macaque monkey cortex. J. Neurosci. 31, 3743–3756 (2011). This detailed connectional study combines fMRI and neural tracer techniques, and defines the functional paths by which visual information concerning others' actions reaches the premotor cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rizzolatti, G. & Sinigaglia, C. The functional role of parieto-frontal mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11, 264–274 (2010).

    CAS  PubMed  Google Scholar 

  9. Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S. & Lemon, R. N. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron 64, 922–930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vigneswaran, G., Philipp, R., Lemon, R. N. & Kraskov, A. M1 corticospinal mirror neurons and their role in movement suppression during action observation. Curr. Biol. 23, 236–243 (2013). This single-neuron study provides the first demonstration that corticospinal neurons of the monkey primary motor cortex are endowed with mirror properties and suggests a mechanism for suppressing involuntary movements during action observation.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cisek, P. & Kalaska, J. F. Neural correlates of mental rehearsal in dorsal premotor cortex. Nature 431, 993–996 (2004).

    CAS  PubMed  Google Scholar 

  12. Tkach, D., Reimer, J. & Hatsopoulos, N. G. Congruent activity during action and action observation in motor cortex. J. Neurosci. 27, 13241–13250 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dushanova, J. & Donoghue, J. Neurons in primary motor cortex engaged during action observation. Eur. J. Neurosci. 31, 386–398 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Falcone, R., Brunamonti, E., Ferraina, S. & Genovesio, A. Neural encoding of self and another agent's goal in the primate prefrontal cortex: human–monkey interactions. Cereb Cortex http://dx.doi.org./10.1093/cercor/bhv224 (2015).

  15. Caspers, S., Zilles, K., Laird, A. R. & Eickhoff, S. B. ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50, 1148–1167 (2010). This review summarizes a large number of experiments on action observation and imitation, and individuates a basic circuit that is involved in goal ascription in humans.

    PubMed  PubMed Central  Google Scholar 

  16. Grosbras, M. H., Beaton, S. & Eickhoff, S. B. Brain regions involved in human movement perception: a quantitative voxel-based meta-analysis. Hum. Brain Mapp. 33, 431–454 (2012).

    PubMed  Google Scholar 

  17. Molenberghs, P., Cunnington, R. & Mattingley, J. B. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev. 36, 341–349 (2012).

    PubMed  Google Scholar 

  18. Gazzola, V. & Keysers, C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb. Cortex 19, 1239–1255 (2009).

    PubMed  Google Scholar 

  19. Keysers, C., Kaas, J. H. & Gazzola, V. Somatosensation in social perception. Nat. Rev. Neurosci. 11, 417–428 (2010).

    CAS  PubMed  Google Scholar 

  20. Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M. & Fried, I. Single-neuron responses in humans during execution and observation of actions. Curr. Biol. 20, 750–756 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001).

    CAS  PubMed  Google Scholar 

  22. Kilner, J. M. More than one pathway to action understanding. Trends Cogn. Sci. 15, 352–357 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Cook, R. & Bird, G. Do mirror neurons really mirror and do they really code for action goals? Cortex 49, 2944–2945 (2013).

    PubMed  Google Scholar 

  24. Ferrari, P. F., Rozzi, S. & Fogassi, L. Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. J. Cogn. Neurosci. 17, 212–226 (2005).

    PubMed  Google Scholar 

  25. Rochat, M. J. et al. Responses of mirror neurons in area F5 to hand and tool grasping observation. Exp. Brain Res. 204, 605–616 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Fogassi, L. et al. Parietal lobe: from action organization to intention understanding. Science 302, 662–667 (2005).

    Google Scholar 

  27. Kohler, E. et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848 (2002).

    CAS  PubMed  Google Scholar 

  28. Gazzola, V., Aziz-Zadeh, L. & Keysers, C. Empathy and the somatotopic auditory mirror system in humans. Curr. Biol. 16, 1824–1829 (2006).

    CAS  PubMed  Google Scholar 

  29. Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J. & De Yoe, E. A. Distinct cortical pathways for processing tool versus animal sounds. J. Neurosci. 25, 5148–5158 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rizzolatti, G. et al. Functional organization of inferior area 6 in the macaque monkey. II. area F5 and the control of distal movements. Exp. Brain Res. 71, 491–507 (1988).

    CAS  PubMed  Google Scholar 

  31. Bonini, L. et al. Selectivity for grip type and action goal in macaque inferior parietal and ventral premotor grasping neurons. J. Neurophysiol. 108, 1607–1619 (2012).

    PubMed  Google Scholar 

  32. Bonini, L., Maranesi, M., Livi, A., Fogassi, L. & Rizzolatti, G. Ventral premotor neurons encoding representations of action during self and others' inaction. Curr. Biol. 24, 1611–1614 (2014). This single-neuron study shows that the monkey PMv encodes action goals not only when performing and observing actions to be performed but also when refraining from acting and observing actions to be refrained from.

    CAS  PubMed  Google Scholar 

  33. Abdollahi, R. O., Jastorff, J. & Orban, G. A. Common and segregated processing of observed actions in human SPL. Cereb. Cortex 11, 2734–2753 (2012).

    Google Scholar 

  34. Cattaneo, L., Sandrini, M. & Schwarzbach, J. State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cereb. Cortex 20, 2252–2258 (2010).

    PubMed  Google Scholar 

  35. Silvanto, J., Muggleton, N. & Walsh, V. State dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454 (2008).

    PubMed  Google Scholar 

  36. Jastorff, J., Begliomini, C., Fabbri-Destro, M., Rizzolatti, G. & Orban, G. A. Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. J. Neurophysiol. 104, 128–140 (2010).

    PubMed  Google Scholar 

  37. Brass, M., Bekkering, H., Wohlschläger, A. & Prinz, W. Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain Cogn. 44, 124–143 (2000).

    CAS  PubMed  Google Scholar 

  38. Craighero, L., Bello, A., Fadiga, L. & Rizzolatti, G. Hand action preparation influences the responses to hand pictures. Neuropsychologia 40, 492–502 (2002).

    PubMed  Google Scholar 

  39. Kilner, J. M., Paulignan, Y. & Blakemore, S. J. An interference effect of observed biological movement on action. Curr. Biol. 13, 522–525 (2003).

    CAS  PubMed  Google Scholar 

  40. Cattaneo, L. et al. One's motor performance predictably modulates the understanding of others' actions through adaptation of premotor visuo-motor neurons. Soc. Cogn. Affect. Neurosci. 6, 301–310 (2011).

    PubMed  Google Scholar 

  41. Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E. & Haggard, P. Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb. Cortex 15, 1243–1249 (2005). This article provides the most elegant demonstration that acquired motor skills change the responsiveness of the mirror cortical areas during the observation of actions exploiting those skills.

    CAS  PubMed  Google Scholar 

  42. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E. & Haggard, P. Seeing or doing? Influence of visual and motor familiarity in action observation. Curr. Biol. 16, 1905–1910 (2006).

    CAS  PubMed  Google Scholar 

  43. Cross, E. S., Hamilton, A. F. & Grafton, S. T. Building a motor simulation de novo: observation of dance by dancers. Neuroimage 31, 1257–1267 (2006).

    PubMed  PubMed Central  Google Scholar 

  44. Casile, A. & Giese, M. A. Non visual motor training influences biological motion perception. Curr. Biol. 16, 69–74 (2006).

    CAS  PubMed  Google Scholar 

  45. Costantini, M., Ambrosini, E., Cardellicchio, P. & Sinigaglia, C. How your hand drives my eyes. Soc. Cogn. Affect. Neurosci. 9, 705–711 (2014).

    PubMed  Google Scholar 

  46. Michael, J. et al. Continuous theta-burst stimulation demonstrates a causal role of premotor homunculus in action understanding. Psychol. Sci. 25, 963–972 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Heilman, K. M., Rothi, L. J. & Valenstein, E. Two forms of ideomotor apraxia. Neurology 32, 342–346 (1982).

    CAS  PubMed  Google Scholar 

  48. Rothi, L. J., Heilman, K. M. & Watson, R. T. Pantomime comprehension and ideomotor apraxia. J. Neurol. Neurosurg. Psychiatry 48, 207–210 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pazzaglia, M., Pizzamiglio, L., Pes, E. & Aglioti, S. M. The sound of actions in apraxia. Curr. Biol. 18, 1766–1772 (2008). This neuropsychological study convincingly demonstrates a causative link between execution of actions and their recognition.

    CAS  PubMed  Google Scholar 

  50. De Renzi, E. & Faglioni, P. in Handbook of Clinical and Experimental Neuropsychology (eds Denes, G. & Pizzamiglio, L.) 421–440 (Psychology Press, 1999).

    Google Scholar 

  51. Gothard, K. & Hoffman, K. in Primate Neuroethology (eds Platt, M. & Ghazanfar, A.) 292–315 (Oxford Univ. Press, 2010).

    Google Scholar 

  52. Caruana, F., Jezzini, A., Sbriscia-Fioretti, B., Rizzolatti, G. & Gallese, V. Emotional and social behaviors elicited by electrical stimulation of the insula in the macaque monkey. Curr. Biol. 21, 195–199 (2011).

    CAS  PubMed  Google Scholar 

  53. Jezzini, A., Caruana, F., Stoianov, I., Gallese, V. & Rizzolatti, G. Functional organization of the insula and inner perisylvian regions. Proc. Natl Acad. Sci. USA 109, 10077–10082 (2012). This detailed study of the physiological organization of the monkey insula shows the profound functional heterogeneity of different sectors of the insula.

    CAS  PubMed  Google Scholar 

  54. Kurth, F., Zilles, K., Fox, P. T., Laird, A. R. & Eickhoff, S. B. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 214, 519–534 (2010). This detailed meta-analysis of fMRI studies of the human insula highlights its functional heterogeneity.

    PubMed  PubMed Central  Google Scholar 

  55. Ojemann, G. A. & Whitaker, H. A. Language localization and variability. Brain Lang. 6, 239–260 (1978).

    CAS  PubMed  Google Scholar 

  56. Vignolo, L. A., Boccardi, E. & Caverni, L. Unexpected CT-scan findings in global aphasia. Cortex 22, 55–69 (1986).

    CAS  PubMed  Google Scholar 

  57. Penfield, W. & Faulk, M. E. The insula: further observations on its function. Brain 78, 445–470 (1955).

    CAS  PubMed  Google Scholar 

  58. Isnard, J., Guenot, M., Sindou, M. & Mauguiére, F. Clinical manifestation of insular lobe seizures: a stereo-electroencephalo-graphic study. Epilepsia 45, 1079–1090 (2004).

    PubMed  Google Scholar 

  59. Catenoix, H. et al. The role of the anterior insular cortex in ictal vomiting: a stereotactic electroencephalography study. Epilepsy Behav. 13, 560–563 (2008).

    PubMed  Google Scholar 

  60. Yaxley, S., Rolls, E. T. & Sienkiewicz, Z. J. Gustatory responses of single neurons in the insula of the macaque monkey. J. Neurophysiol. 63, 689–700 (1990).

    CAS  PubMed  Google Scholar 

  61. Scott, T. R., Plata-Salaman, C. R., Smith, V. L. & Giza, B. K. Gustatory neural coding in the monkey cortex: stimulus intensity. J. Neurophysiol. 65, 76–86 (1991).

    CAS  PubMed  Google Scholar 

  62. Phillips, M. L. et al. A specific neural substrate for perceiving facial expressions of disgust. Nature 389, 495–498 (1997).

    CAS  PubMed  Google Scholar 

  63. Phillips, M. L. et al. Neural responses to facial and vocal expressions of fear and disgust. Proc. Biol. Sci. 265, 1809–1817 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hennenlotter, A. & Schroeder, U. Partly dissociable neural substrates for recognizing basic emotions: a critical review. Prog. Brain Res. 156, 443–456 (2006).

    PubMed  Google Scholar 

  65. Krolak-Salmon, P. et al. An attention modulated response to disgust in human ventral anterior insula. Ann. Neurol. 53, 446–453 (2003).

    PubMed  Google Scholar 

  66. Wicker, B. et al. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40, 655–664 (2003). This study was the first to demonstrate that feeling an emotion and observing an emotion in another individual activate the same voxels in the AI.

    CAS  PubMed  Google Scholar 

  67. Jabbi, M., Bastiaansen, J. & Keysers, C. A common anterior insula representation of disgust observation, experience and imagination shows divergent functional connectivity pathways. PLoS ONE 3, e2939 (2008). This paper is an important extension of the previous study (reference 61) showing that not only feeling one's own disgust and observing others' disgust but also the internal imagery of disgust have a common representation in the AI.

    PubMed  PubMed Central  Google Scholar 

  68. Sprengelmeyer, R., Rausch, M., Eysel, U. T. & Przuntek, H. Neural structures associated with recognition of facial expressions of basic emotions. Proc. Biol. Sci. 265, 1927–1931 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hennenlotter, A. et al. A common neural basis for receptive and expressive communication of pleasant facial affect. Neuroimage 26, 581–591 (2005).

    PubMed  Google Scholar 

  70. Jabbi, M., Swart, M. & Keysers, C. Empathy for positive and negative emotions in the gustatory cortex. Neuroimage 34, 1744–1753 (2007).

    PubMed  Google Scholar 

  71. Singer, T. et al. Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–1162 (2004).

    CAS  PubMed  Google Scholar 

  72. Lamm, C., Decety, J. & Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54, 2492–2502 (2011).

    PubMed  Google Scholar 

  73. Iannetti, G. D., Salomons, T. V., Moayedi, M., Mouraux, A. & Davis, K. D. Beyond metaphor: contrasting mechanisms of social and physical pain. Trends Cogn. Sci. 17, 371–378 (2013).

    Google Scholar 

  74. Zaki, J., Wager, T. D., Singer, T., Keysers, C. & Gazzola, V. The anatomy of suffering: understanding the relationship between nociceptive and empathic pain. Trends Cogn. Sci. 20, 249–259 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Caruana, F. et al. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex. Cortex 71, 323–331 (2015).

    PubMed  Google Scholar 

  76. Caruana, F. et al. A mirror mechanism for laughter in the anterior cingulate cortex. Emotion (in the press).

  77. Gallese, V., Keysers, C. & Rizzolatti, G. A unifying view of the basis of social cognition. Trends Cogn. Sci. 8, 396–403 (2004).

    PubMed  Google Scholar 

  78. Goldman, A. & Sripada, C. S. Simulationist models of face-based emotion recognition. Cognition 94, 193–213 (2005).

    PubMed  Google Scholar 

  79. Niedenthal, P. M. Embodying emotion. Science 316, 1002–1005 (2007).

    CAS  PubMed  Google Scholar 

  80. Calder, A. J., Keane, J., Manes, F., Antoun, N. & Young, A. W. Impaired recognition and experience of disgust following brain injury. Nat. Neurosci. 3, 1077–1078 (2000).

    CAS  PubMed  Google Scholar 

  81. Adolphs, R., Tranel, D. & Damasio, A. R. Dissociable neural systems for recognizing emotions. Brain Cogn. 52, 61–69 (2003).

    PubMed  Google Scholar 

  82. Kipps, M., Duggins, A. J., McCusker, E. A. & Calder, A. J. Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington's disease. J. Cogn. Neurosci. 19, 1206–1217 (2007).

    CAS  PubMed  Google Scholar 

  83. Canessa, N. et al. Understanding others' regret: a fMRI study. PLoS ONE 4, e7402 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Trevarthen, C. in Intersubjective Communication and Emotion in Early Ontogeny (ed. Bråten, S.) 15–46 (Cambridge Univ. Press, 1998).

    Google Scholar 

  85. Stern, D. N. The Interpersonal World of the Infant (Basic Books, 1985).

    Google Scholar 

  86. Stern, D. N. Forms of Vitality: Exploring Dynamic Experience in Psychology, Arts, Psychotherapy, and Development (Oxford Univ. Press, 2010).

    Google Scholar 

  87. Di Cesare, G., Di Dio, C., Marchi, M. & Rizzolatti, G. Expressing our internal states and understanding those of others. Proc. Natl Acad. Sci. USA 112, 10331–10335 (2015). This fMRI study was the first to provide evidence for the presence ofthe mirror mechanism for vitality forms in the dorsocentral insula.

    CAS  PubMed  Google Scholar 

  88. Borra, E. et al. Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb. Cortex 18, 1094–1111 (2008).

    PubMed  Google Scholar 

  89. Gerbella, M., Belmalih, A., Borra, E., Rozzi, S. & Luppino, G. Cortical connections of the anterior (F5a) subdivision of the macaque ventral premotor area F5. Brain Struct. Funct. 216, 43–65 (2011).

    PubMed  Google Scholar 

  90. Borra, E., Gerbella, M., Rozzi, S. & Luppino, G. Anatomical evidence for the involvement of the macaque ventrolateral prefrontal area 12r in controlling goal-directed actions. J. Neurosci. 31, 12351–12363 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Almashaikhi, T. et al. Functional connectivity of insular efferences. Hum. Brain Mapp. 35, 5279–5294 (2014).

    PubMed  Google Scholar 

  92. Di Cesare, G. et al. The neural correlates of 'vitality form' recognition: an fMRI study. Soc. Cogn. Affect. Neurosci. 9, 951–960 (2014).

    PubMed  Google Scholar 

  93. Di Cesare, G. et al. Vitality forms processing in the insula during action observation: a multivoxel pattern analysis. Front. Hum. Neurosci. http://dx.doi.org/10.3389/fnhum.2016.00267 (2016).

  94. Rochat, M. J. et al. Impaired vitality form recognition in autism. Neuropsychologia 51, 1918–1924 (2013).

    PubMed  Google Scholar 

  95. Boria, S. et al. Intention understanding in autism. PLoS ONE 4, e5596 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Hamilton, A. F., Brindley, R. M. & Frith, U. Imitation and action understanding in autistic spectrum disorders: how valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia 45, 1859–1868 (2007).

    PubMed  Google Scholar 

  97. Hobson, R. P. & Lee, A. Imitation and identification in autism. J. Child Psychol. Psychiatry 40, 649–659 (1999).

    CAS  PubMed  Google Scholar 

  98. Hobson, R. P. & Hobson, J. A. Dissociable aspects of imitation: a study in autism. J. Exp. Child Psychol. 101, 170–185 (2008).

    PubMed  Google Scholar 

  99. Gizzonio, V. et al. Failure in pantomime execution correlates with the severity of social behavior deficits in children with autism: a praxis study. J. Autism Dev. Disord. 45, 3085–3097 (2015).

    PubMed  Google Scholar 

  100. MacNeil, L. K. & Mostofsky, S. H. Specificity of dyspraxia in children with autism. Neuropsychology 26, 165–171 (2012).

    PubMed  PubMed Central  Google Scholar 

  101. Rizzolatti, G. & Sinigaglia, C. in Action Science: Foundations of an Emerging Discipline (eds Prinz, W., Beisert, M. & Herwig, A.) 201–227 (MIT Press, 2013).

    Google Scholar 

  102. Sinigaglia, C. & Rizzolatti, G. Through the looking glass: self and others. Consci. Cogn. 20, 64–74 (2011).

    Google Scholar 

  103. Sinigaglia, C. & Butterfill, S. A puzzle about the relations between thought, experience, and the motoric. Synthese 192, 1923–1936 (2015).

    Google Scholar 

  104. Jeannerod, M. The representing brain: neural correlates of motor intention and imagery. Behav. Brain Sci. 17, 187–202 (1994).

    Google Scholar 

  105. de Lange, F. P., Spronk, M., Willems, R. M., Toni, I. & Bekkering, H. Complementary systems for understanding action intentions. Curr. Biol. 18, 454–457 (2008).

    CAS  PubMed  Google Scholar 

  106. Brass, M., Schmitt, R. M., Spengler, S. & Gergely, G. Investigating action understanding: inferential processes versus action simulation. Curr. Biol. 17, 2117–2121 (2007).

    CAS  PubMed  Google Scholar 

  107. Liepelt, R., Von Cramon, D. Y. & Brass, M. How do we infer other's goals from non stereotypic actions? The outcome of context-sensitive inferential processing in right inferior parietal and posterior temporal cortex. Neuroimage 43, 784–792 (2008).

    PubMed  Google Scholar 

  108. Corradi-Dell'Acqua, C., Hofstetter, C. & Vuilleumier, P. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex. Soc. Cogn. Affect. Neurosci. 9, 1175–1184 (2014).

    PubMed  Google Scholar 

  109. Kilner, J. M. & Frith, C. Action observation: inferring intentions without mirror neurons. Curr. Biol. 18, R32–R33 (2008).

    CAS  PubMed  Google Scholar 

  110. Keysers, C. & Gazzola, V. Integration simulation and theory of mind: from self to social cognition. Trends Cogn. Sci. 11, 194–196 (2007).

    PubMed  Google Scholar 

  111. Engen, H. G. & Singer, T. Empathy circuits. Curr. Opin. Neurobiol. 23, 275–282 (2012).

    PubMed  Google Scholar 

  112. Southgate, V., Johnson, M. H., El Karoui, I. & Csibra, G. Motor system activation reveals infants' on-line prediction of others' goals. Psychol. Sci. 21, 355–359 (2010).

    PubMed  Google Scholar 

  113. Gerson, S. A. & Woodward, A. L. The joint role of trained, untrained, and observed actions at the origins of goal recognition. Infant Behav. Dev. 37, 94–104 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Woodward, A. L. & Gerson, S. A. Mirroring and the development of action understanding. Phil. Trans. R. Soc. B 369, 20130181 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Butterfill for his helpful comments on the manuscript. This works was supported by a grant from Fondazione Cariparma, by Inter University Attraction Program (IUAP) and an European Research Council (ERC) Advanced Grant to G.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Rizzolatti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mirror neurons

Neurons that discharge both when an individual performs a given behaviour and when an individual observes another person performing the same or a similar behaviour; these neurons are found in many brain cortical areas of monkeys and other species, including humans, marmosets and birds.

Mirror mechanism

A basic brain mechanism that transforms sensory representations of others' behaviour into one's own motor or visceromotor representations concerning that behaviour and, depending on the location, can fulfil a range of cognitive functions, including action and emotion understanding.

Action goals

The outcomes to which actions are directed. In non-technical contexts, the term is also used when people talk about the goal of their struggles or assert that their goal is to work at their best.

Vitality form

Agents' affective states, moods and attitudes that characterize how their actions and emotions are displayed and experienced; it has been hypothesized that the identification of others' vitality forms, which is crucial for social interaction, could involve the mirror mechanism.

Understanding from the inside

A notion that describes how the mirror mechanism might provide a route to knowledge of others by capitalizing on one's own motor or visceromotor representations. It also reflects the idea that there are phenomenal aspects common to experiences of one's own and other's actions, emotions and vitality forms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzolatti, G., Sinigaglia, C. The mirror mechanism: a basic principle of brain function. Nat Rev Neurosci 17, 757–765 (2016). https://doi.org/10.1038/nrn.2016.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing