Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The nature of foveal representation

Abstract

A fundamental question in visual perception is whether the representation of the fovea is split at the midline between the two hemispheres, or bilaterally represented by overlapping projections of the fovea in each hemisphere. Here we examine psychophysical, anatomical, neuropsychological and brain stimulation experiments that have addressed this question, and argue for a shift from the current default view of bilateral representation to that of a split representation, to provide a greater understanding of higher visual processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The projection of visual foveal stimuli to the pineal gland (Descartes, 1644).
Figure 2: Isoeccentricity maps of the human visual area.
Figure 3: Diagram summarizing the anatomy for both the split and bilateral representation models of vision.
Figure 4: Magnetic stimulation and word processing.
Figure 5: Word naming latency as a function of cerebral dominance, word length and letter fixated.

Similar content being viewed by others

References

  1. Descartes, R. The Philosophical Writings of Descartes, Volume 1. Translated by Cottingham, J. Stoothoff, R. & Murdoch, D. 105–106 (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  2. Brysbaert, M. Interhemispheric transfer and the processing of foveally presented stimuli. Behav. Brain Res. 64, 151–161 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Choplin, N. & Edwards, R. Visual Fields (SLACK Incorporated, New Jersey, 1998).

    Google Scholar 

  4. Silverthorn, D. U. Human Physiology: an Integrated Approach 2nd edition (Prentice Hall, New Jersey, 2000).

    Google Scholar 

  5. Bunt, A. H. & Minckler, D. S. Foveal sparing: new anatomical evidence for bilateral representation of the central retina. Arch. Ophthalmol. 95, 1445–1447 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Stone, J. The naso-temporal division of the cat's retina. J. Comp. Neurol. 136, 585–600 (1966).

    Google Scholar 

  7. Stone, J., Leicester, J. & Sherman, S. M. The naso-temporal division of the monkey's retina. J. Comp. Neurol. 150, 333–348 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Terao, N., Inatomi, A. & Maeda, T. Anatomical evidence for the overlapped distribution of ipsilaterally and contralaterally projecting ganglion cells to the lateral geniculate nucleus in the cat retina: a morphologic study with fluorescent tracers. Invest. Ophthalmol. Vis. Sci. 23, 796–798 (1982).

    CAS  PubMed  Google Scholar 

  9. Leventhal, A. G., Ault, S. J. & Vitek, D. J. The nasotemporal division in primate retina: the neural bases of macular sparing and splitting. Science 240, 66–67 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Leventhal, A. G., Thompson, K. G. & Liu, D. Retinal ganglion cells within the foveola of New World (Saimiri sciureus) and Old World (Macaca fascicularis) monkeys. J. Comp. Neurol. 338, 242–254 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Fukuda, Y., Sawai, H., Watanabe, M., Wakakuwa, K. & Morigiwa, K. Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J. Neurosci. 9, 2353–2373 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chalupa, L. M. & Lia, B. The nasotemporal division of retinal ganglion cells with crossed and uncrossed projections in the fetal rhesus monkey. J. Neurosci. 11, 191–202 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tootell, R. B. H., Switkes, E., Silverman, M. S. & Hamilton, S. L. Functional anatomy of macaque striate cortex: II. Retinotopic organization. J. Neurosci. 8, 1531–1568 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cowey, A. & Rolls, E. Human cortical magnification factor in man its relation to visual acuity. Exp. Brain Res. 21, 447–454 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Portin, K., Vanni, S., Virsu, V. & Hari, R. Stronger occipital cortical activation to lower than upper visual field stimuli. Neuromagnetic recordings. Exp. Brain Res. 124, 287–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, A. L., Singh, K. D. & Smith, A. T. Surround modulation measured with functional MRI in the human visual cortex. J. Neurophysiol. 89, 525–533 (2003).

    Article  PubMed  Google Scholar 

  17. Sereno, M. I. et al. Borders of multiple visual areas in human revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Portin, K., Salenius, S., Salmelin, R. & Hari, R. Activation of the human occipital and parietal cortex by pattern and luminance stimuli: neuromagnetic measurements. Cereb. Cortex 8, 253–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Harvey, L. O. Jr. Single representation of the visual midline in humans. Neuropsychologia 16, 601–610 (1978).

    Article  PubMed  Google Scholar 

  20. Haun, F. Functional dissociation of the hemispheres using foveal visual input. Neuropsychologia 16, 725–733 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Lines, C. R. & Milner, A. D. Nasotemporal overlap in the human retina investigated by means of simple reaction time to lateralized light flash. Exp. Brain Res. 50, 166–172 (1983).

    CAS  PubMed  Google Scholar 

  22. Gazzaniga, M. The Bisected Brain (Appleton-Century-Crofts, New York, 1970).

    Google Scholar 

  23. Fendrich, R. & Gazzaniga, M. S. Evidence of foveal splitting in a commissurotomy patient. Neuropsychologia 27, 273–281 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Fendrich, R., Wessinger, C. M. & Gazzaniga, M. S. Nasotemporal overlap at the retinal vertical meridian: investigations with a callosotomy patient. Neuropsychologia 34, 637–646 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Gazzaniga, M. S. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123, 1293–1326 (2000).

    Article  PubMed  Google Scholar 

  26. Sugishita, M., Hamilton, C. R., Sakuma, I. & Hemmi, I. Hemispheric representation of the central retina of commissurotomized participants. Neuropsychologia 32, 399–415 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Huber, A. Homonymous hemianopia after occipital lobectomy. Am. J. Opthalmol. 54, 623–629 (1962).

    Article  CAS  Google Scholar 

  28. Trauzettel-Klosinski, S. & Reinhard, J. The vertical border in hemianopia and its significance for fixation and reading. Invest. Ophthalmol. Vis. Sci. 39, 2177–2186 (1998).

    CAS  PubMed  Google Scholar 

  29. Williams, D. & Gassel, M. M. Visual function in patients with homonymous hemianopia. I. The visual fields. Brain 85, 175–250 (1962).

    Article  CAS  PubMed  Google Scholar 

  30. Ehlers, N. Quadrant sparing of the macula. Acta Ophthalmol. 53, 393–402 (1975).

    Article  CAS  Google Scholar 

  31. Sugishita, M., Hemmi, I., Sakuma, I., Beppu, H. & Shiokawa, Y. The problem of macular sparing after unilateral occipital lesions. J. Neurol. 241, 1–9 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Celesia, G. G., Meredith, J. T. & Pluff, K. Perimetry, visual evoked potentials and visual evoked spectrum array in homonymous hemianopia. J. Electroencephalogr. Clin. Neurophysiol. 56, 16–30 (1983).

    Article  CAS  Google Scholar 

  33. Leff, A. P. A historical review of the representation of the visual field in primary visual cortex with special reference to the neural mechanisms underlying macular sparing. Brain Lang. 88, 268–278 (2004).

    Article  PubMed  Google Scholar 

  34. Leff, A. P. et al. Impaired reading in patients with right hemianopia. Ann. Neurol. 47, 171–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Bischoff, P., Lang, J. & Huber, A. Macular sparing as a perimetric artifact. Am. J. Ophthalmol. 119, 72–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Horton, J. C. & Hoyt, W. F. The representation of the visual field in human striate cortex: a revision of the classic Holmes map. Arch. Ophthalmol. 109, 816–824 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, C. G. & Richardson, W. F. G. The course and distribution of the arteries supplying the visual (striate) cortex. Am. J. Ophthalmol. 61, 1391–1396 (1966).

    Article  CAS  PubMed  Google Scholar 

  38. Bouma, H. Visual interference in the parafoveal recognition of initial and final letters of words. Vision Res. 13, 767–782 (1973).

    Article  CAS  PubMed  Google Scholar 

  39. Bub, D. N. & Lewine, J. Different modes of word recognition in the left and right visual fields. Brain Lang. 33, 161–188 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Ellis, A. W., Young, A. W. & Anderson, C. Modes of word recognition in the left and right cerebral hemispheres. Brain Lang. 35, 254–273 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Lavidor, M., Ellis, A. W., Shillcock, R. & Bland, T. Evaluating a split processing model of visual word recognition: effects of word length. Cogn. Brain Res. 12, 265–272 (2001).

    Article  CAS  Google Scholar 

  42. Coltheart, M., Davelaar, E., Jonasson, J. T. & Besner, D. In Attention and Performance VI: The Psychology of Reading (ed. Dornic, S.) 535–555 (Academic, London, 1977).

    Google Scholar 

  43. Andrews, S. The effect of orthographic similarity on lexical retrieval: resolving neighbourhood conflicts. Psychonom. Bull. Rev. 4, 439–461 (1997).

    Article  Google Scholar 

  44. Lavidor, M., Hayes, A., Shillcock, R. & Ellis, A. W. Evaluating a split processing model of visual word recognition: effects of orthographic neighborhood size. Brain Lang. 88, 312–320 (2004).

    Article  PubMed  Google Scholar 

  45. Shillcock, R., Ellison, T. M. & Monaghan, P. Eye-fixation behavior, lexical storage and visual word recognition in a split processing model. Psychol. Rev. 107, 824–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Whitney, C. How the brain encodes the order of letters in a printed word: the SERIOL model and selective literature review. Psychonom. Bull. Rev. 8, 221–243 (2001).

    Article  CAS  Google Scholar 

  47. Lavidor, M., Ellison, A. & Walsh, V. Examination of a split-processing model of visual word recognition: a magnetic stimulation study. Vis. Cogn. 10, 341–362 (2003).

    Article  Google Scholar 

  48. Lavidor, M. & Walsh, V. A magnetic stimulation examination of orthographic neighbourhood effects in visual word recognition. J. Cogn. Neurosci. 15, 354–363 (2003).

    Article  PubMed  Google Scholar 

  49. O'Regan, J. K. in Eye Movements: Cognition and Visual Perception (eds Fisher, D. F., Monty, R. A. & Senders, J. W.) 289–298 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1981).

    Google Scholar 

  50. O'Regan, J. K. & Jacobs, A. M. Optimal viewing position effect in word recognition: a challenge to the current theory. J. Exp. Psychol. Hum. Percept. Perform. 18, 185–197 (1992).

    Article  Google Scholar 

  51. Enquist, M. & Arak, A. Symmetry, beauty and evolution. Nature 10, 169–172 (1994).

    Article  Google Scholar 

  52. Wenderoth, P. The salience of vertical symmetry. Perception 23, 221–236 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Berardi, N. & Fiorentini, A. Visual field asymmetries in pattern discrimination: a sign of asymmetry in cortical visual field representation? Vision Res. 31, 1831–1836 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Evans, C. S., Wenderoth, P. & Cheng, K. Detection of bilateral symmetry in complex biological images. Perception 29, 31–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Gurnsey, R., Herbert, A. M. & Kenemy, J. Bilateral symmetry embedded in noise is detected accurately only at fixation. Vision Res. 38, 3795–3803 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Tyler, C. W., Hardage, L. & Miller, R. Multiple mechanisms for the detection of mirror symmetry. Spatial Vision 9, 79–100 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Tyler, C. W. & Hardage, L. in Human Symmetry Perception and its Computational Analysis (ed. Tyler, C. W.) 157–171 (VSP Publishers, The Netherlands, 1996).

    Google Scholar 

  58. Lee, T. S., Mumford, D., Romero, R. & Lamme, V. A. The role of the primary visual cortex in higher level vision. Vision Res. 38, 2429–2454 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Wenderoth, P. in Human Symmetry Perception and its Computational Analysis (ed. Tyler, C. W.) 49–69 (VSP Publishers, The Netherlands, 1996).

    Google Scholar 

  60. Walsh, V. & Butler, S. The effects of visual cortex lesions on the perception of rotated shapes. Behav. Brain Res. 76, 127–142 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Le Grand, R., Mondloch, C. J., Maurer, D. & Brent, H. P. Expert face processing requires visual input to the right hemisphere during infancy. Nature Neurosci. 6, 1108–1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Liegeois, F. & de Schonen, S. Simultaneous attention in the two visual hemifields and interhemispheric integration: a developmental study on 20- to 26-month-old infants. Neuropsychologia 35, 381–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Mohr, B., Landgrebe, A. & Schweinberger, S. R. Interhemispheric cooperation for familiar but not unfamiliar face processing. Neuropsychologia 40, 1841–1848 (2002).

    Article  PubMed  Google Scholar 

  64. Schweinberger, S. R., Baird, L. M., Blumler, M., Kaufmann, J. M. & Mohr, B. Interhemispheric cooperation for face recognition but not for affective facial expressions. Neuropsychologia 41, 407–414 (2003).

    Article  PubMed  Google Scholar 

  65. Yovel, G., Paller, K. & Levy, J. Putting the brain back together: Mechanisms of interhemispheric integration in face perception. J. Vision 2, 595a (2002).

    Article  Google Scholar 

  66. Tanaka, J. W. & Farah, M. J. Parts and wholes in face recognition. Q. J. Exp. Psychol. A 46, 225–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Luh, K. & Levy, J. Interhemispheric cooperation: left is left and right is right, but sometimes the twain shall meet. J. Exp. Psychol. Hum. Percept. Perform. 21, 1243–1258 (1995).

    Article  Google Scholar 

  68. Young, A. W., Hellawell, D. & Hay, D. C. Configurational information in face perception. Perception 16, 747–759 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Diamond, R. & Carey, S. Why faces are and are not special: an effect of expertise. J. Exp. Psychol. Gen. 115, 107–117 (1986).

    Article  CAS  PubMed  Google Scholar 

  70. Gauthier, I. et al. The fusiform 'face area' is part of a network that processes faces at the individual level. J. Cogn. Neurosci. 12, 495–504 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Brysbaert, M. The importance of interhemispheric transfer for foveal vision: a factor that has been overlooked in theories of visual word recognition and object perception. Brain Lang. 88, 259–267 (2004).

    Article  PubMed  Google Scholar 

  72. Poffenberger, A. T. Reaction time to retinal stimulation with specific reference to the time lost in conduction through nerve centres. Arch. Psychol. 23, 1–73 (1912).

    Google Scholar 

  73. Brown, W. S., Jeeves, M. A., Dietrich, R. & Burnison, D. S. Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis. Neuropsychologia 37, 1165–1180 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Rugg, M. D., Lines, C. R. & Milner, A. D. Visual evoked potentials to lateralized visual stimuli and the measurement of interhemispheric transmission time. Neuropsychologia 22, 215–225 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Corballis, M. C. Hemispheric interactions in simple reaction time. Neuropsychologia 40, 423–434 (2002).

    Article  PubMed  Google Scholar 

  76. Whitney, C. Position-specific effects within the SERIOL framework of letter-position coding. Connection Sci. 13, 235–255 (2001).

    Article  Google Scholar 

  77. Whitney, C. An explanation of the length effect for rotated words. Cogn. Syst. Res. 3, 113–119 (2002).

    Article  Google Scholar 

  78. Monaghan, P. & Pollmann, S. Division of labour between the hemispheres for complex but not simple tasks: an implemented connectionist model. J. Exp. Psychol. Gen. 132, 379–399 (2003).

    Article  PubMed  Google Scholar 

  79. Monaghan, P. & Shillcock, R. C. Hemispheric asymmetries in cognitive modelling: Connectionist modelling of unilateral visual neglect. Psychol. Rev. 111, 283–308 (2004).

    Article  PubMed  Google Scholar 

  80. Amassian, V. E. et al. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. J. Electroencephalogr. Clin. Neurophysiol. 74, 458–462 (1989).

    Article  CAS  Google Scholar 

  81. Potts, G. F. et al. Visual hemi field mapping using transcranial magnetic stimulation coregistered with cortical surfaces derived from magnetic resonance images. J. Clin. Neurophysiol. 15, 344–350 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Leff, M. Sereno, R. Shillcock and R. Tootell for helpful comments on this manuscript. We are grateful to the BBSRC, the European Commission, the Royal Society and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Lavidor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

Eye anatomy

Lavidor's homepage

Walsh's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavidor, M., Walsh, V. The nature of foveal representation. Nat Rev Neurosci 5, 729–735 (2004). https://doi.org/10.1038/nrn1498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing