Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new neural framework for visuospatial processing

Key Points

  • Originally, the dorsal visual processing stream was proposed as a 'Where' pathway, supporting spatial processing, but later accounts proposed that it is a 'How' pathway subserving primarily non-conscious visually-guided action.

  • We resolve this debate by showing that at least three pathways emerge from the dorsal stream, supporting three different forms of spatial processing.

  • The parieto–prefrontal pathway connects the posterior parietal with the prefrontal cortex and supports eye movements and spatial working memory.

  • The parieto–premotor pathway connects the posterior parietal with the premotor cortices and supports visually guided action.

  • The parieto–medial temporal pathway is the most complex projection from the posterior parietal cortex. It is a multisynaptic projection emerging from the caudal portion of the inferior parietal lobule and terminating in the parahippocampal cortex and hippocampus, supporting navigation.

  • The intermediate areas along the parieto–medial temporal pathway — the posterior cingulate and retrosplenial cortices — seem to aid in the coordination of allocentric and egocentric spatial representations.

Abstract

The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frameworks of visuospatial processing.
Figure 2: Anatomy of the three pathways.
Figure 3: Parieto–medial temporal pathway in humans.
Figure 4: Functional evidence from PCC and RSC.
Figure 5: Functional evidence from retrosplenial complex and medial temporal lobe.

Similar content being viewed by others

References

  1. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  2. Mishkin, M., Ungerleider, L. G. & Macko, K. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

    Article  Google Scholar 

  3. Macko, K. A. et al. Mapping the primate visual system with [2–14C]deoxyglucose. Science 218, 394–397 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Milner, A. D. et al. Perception and action in 'visual form agnosia'. Brain 114, 405–428 (1991).

    Article  PubMed  Google Scholar 

  5. James, T. W., Culham, J., Humphrey, G. K., Milner, A. D. & Goodale, M. A. Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126, 2463–2475 (2003).

    Article  PubMed  Google Scholar 

  6. Goodale, M. A., Milner, A. D., Jakobson, L. S. & Carey, D. P. A neurological dissociation between perceiving objects and grasping them. Nature 349, 154–156 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Gentilucci, M. & Rizzolatti, G. in Vision and Action (ed. Goodale, M. A.) 147–162 (Ablex, New York, 1990).

    Google Scholar 

  8. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Crick, F. & Koch, C. A framework for consciousness. Nature Neurosci. 6, 119–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Read, J. C., Phillipson, G. P., Serrano-Pedraza, I., Milner, A. D. & Parker, A. J. Stereoscopic vision in the absence of the lateral occipital cortex. PLoS ONE 5, e12608 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mishkin, M. in Exploring Brain Functions: Models in Neuroscience (eds Poggio, T. & Glaser, D.) 113–126 (Wiley, 1993).

    Google Scholar 

  12. Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Creem, S. H. & Proffitt, D. R. Defining the cortical visual systems: “what”, “where”, and “how”. Acta Psychol. 107, 43–68 (2001).

    Article  CAS  Google Scholar 

  14. Vann, S. D., Aggleton, J. P. & Maguire, E. A. What does the retrosplenial cortex do? Nature Rev. Neurosci. 10, 792–802 (2009).

    Article  CAS  Google Scholar 

  15. Aguirre, G. K. & D'Esposito, M. Topographical disorientation: a synthesis and taxonomy. Brain 122, 1613–1628 (1999). An excellent review of topographical disorientation, a disorder that occurs with damage to the regions along the parieto–medial temporal pathway. It is notable because the particular forms of topographical disorientation that result from damage to these regions provides clues to their function.

    Article  PubMed  Google Scholar 

  16. Galletti, C. et al. The cortical connections of area V6: an occipito-parietal network processing visual information. Eur. J. Neurosci. 13, 1572–1588 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Galletti, C., Fattori, P., Gamberini, M. & Kutz, D. F. The cortical visual area V6: brain location and visual topography. Eur. J. Neurosci. 11, 3922–3936 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Colby, C. L., Gattass, R., Olson, C. R. & Gross, C. G. Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J. Comp. Neurol. 269, 392–413 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Rozzi, S. et al. Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb. Cortex 16, 1389–1417 (2006). A broad survey of the anatomical connectivity across the IPL, providing evidence for the differential connectivity of rIPL and cIPL and the emergence of the parieto–medial temporal pathway from cIPL.

    Article  PubMed  Google Scholar 

  20. Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Schall, J. D., Morel, A., King, D. J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487 (1995). This provides key anatomical evidence for the connections between the posterior parietal cortex and the prefrontal cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Funahashi, S. Prefrontal cortex and working memory processes. Neuroscience 139, 251–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G. & Haxby, J. V. An area specialized for spatial working memory in human frontal cortex. Science 279, 1347–1351 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Curtis, C. E. Prefrontal and parietal contributions to spatial working memory. Neuroscience 139, 173–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Matelli, M., Govoni, P., Galletti, C., Kutz, D. F. & Luppino, G. Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J. Comp. Neurol. 402, 327–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Gamberini, M. et al. Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J. Comp. Neurol. 513, 622–642 (2009). A detailed recent neuroanatomical tracing study showing the involvement of V6Ad within the parieto–premotor pathway.

    Article  PubMed  Google Scholar 

  28. Nachev, P., Kennard, C. & Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nature Rev. Neurosci. 9, 856–869 (2008).

    Article  CAS  Google Scholar 

  29. Galletti, C., Battaglini, P. P. & Fattori, P. Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey. Eur. J. Neurosci. 3, 452–461 (1991).

    Article  PubMed  Google Scholar 

  30. Galletti, C., Battaglini, P. P. & Fattori, P. Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. Eur. J. Neurosci. 7, 2486–2501 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Galletti, C., Fattori, P., Kutz, D. F. & Battaglini, P. P. Arm movement-related neurons in the visual area V6A of the macaque superior parietal lobule. Eur. J. Neurosci. 9, 410–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Duhamel, J. R., Colby, C. L. & Goldberg, M. E. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol. 79, 126–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Colby, C. L. & Duhamel, J. R. Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29, 517–537 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Fattori, P., Gamberini, M., Kutz, D. F. & Galletti, C. 'Arm-reaching' neurons in the parietal area V6A of the macaque monkey. Eur. J. Neurosci. 13, 2309–2313 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Fattori, P., Kutz, D. F., Breveglieri, R., Marzocchi, N. & Galletti, C. Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. Eur. J. Neurosci. 22, 956–972 (2005).

    Article  PubMed  Google Scholar 

  36. Fattori, P. et al. Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. J. Neurosci. 29, 1928–1936 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fattori, P. et al. The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey. J. Neurosci. 30, 342–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rockland, K. S. & Van Hoesen, G. W. Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. Cereb. Cortex 9, 232–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Ding, S. L., Van Hoesen, G. & Rockland, K. S. Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J. Comp. Neurol. 425, 510–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Pandya, D. N. & Seltzer, B. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 204, 196–210 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol. 287, 393–421 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Vogt, B. A. & Pandya, D. N. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J. Comp. Neurol. 262, 271–289 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Morris, R., Pandya, D. N. & Petrides, M. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J. Comp. Neurol. 407, 183–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: II. Cortical afferents. J. Comp. Neurol. 466, 48–79 (2003).

    Article  PubMed  Google Scholar 

  45. Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: III. Cortical efferents. J. Comp. Neurol. 502, 810–833 (2007).

    Article  PubMed  Google Scholar 

  46. Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 493, 479–509 (2005).

    Article  PubMed  Google Scholar 

  47. O'Mara, S. M., Rolls, E. T., Berthoz, A. & Kesner, R. P. Neurons responding to whole-body motion in the primate hippocampus. J. Neurosci. 14, 6511–6523 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robertson, R. G., Rolls, E. T., Georges-Francois, P. & Panzeri, S. Head direction cells in the primate pre-subiculum. Hippocampus 9, 206–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Hassabis, D. et al. Decoding neuronal ensembles in the human hippocampus. Curr. Biol. 19, 546–554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bartsch, T. et al. Focal lesions of human hippocampal CA1 neurons in transient global amnesia impair place memory. Science 328, 1412–1415 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Margulies, D. S. et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl Acad. Sci. USA 106, 20069–20074 (2009). A broad survey of the functional connectivity of the precuneus. Provides critical converging evidence for the existence of the parieto–medial temporal pathway in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caminiti, R. et al. Understanding the parietal lobe syndrome from a neurophysiological and evolutionary perspective. Eur. J. Neurosci. 31, 2320–2340 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vincent, J. L., Kahn, I., Van Essen, D. C. & Buckner, R. L. Functional connectivity of the macaque posterior parahippocampal cortex. J. Neurophysiol. 103, 793–800 (2010).

    Article  PubMed  Google Scholar 

  54. Rushworth, M. F., Behrens, T. E. & Johansen-Berg, H. Connection patterns distinguish 3 regions of human parietal cortex. Cereb. Cortex 16, 1418–1430 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Culham, J. C. & Kanwisher, N. G. Neuroimaging of cognitive functions in human parietal cortex. Curr. Opin. Neurobiol. 11, 157–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Boussaoud, D., Ungerleider, L. G. & Desimone, R. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol. 296, 462–495 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Phinney, R. E. & Siegel, R. M. Speed selectivity for optic flow in area 7a of the behaving macaque. Cereb. Cortex 10, 413–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Duffy, C. J. MST neurons respond to optic flow and translational movement. J. Neurophysiol. 80, 1816–1827 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Andersen, R. A., Shenoy, K. V., Snyder, L. H., Bradley, D. C. & Crowell, J. A. The contributions of vestibular signals to the representations of space in the posterior parietal cortex. Ann. NY Acad. Sci. 871, 282–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Georgieva, S., Peeters, R., Kolster, H., Todd, J. T. & Orban, G. A. The processing of three-dimensional shape from disparity in the human brain. J. Neurosci. 29, 727–742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Genovesio, A. & Ferraina, S. Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. J. Neurophysiol. 91, 2670–2684 (2004).

    Article  PubMed  Google Scholar 

  62. Orban, G. A., Janssen, P. & Vogels, R. Extracting 3D structure from disparity. Trends Neurosci. 29, 466–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Verdon, V., Schwartz, S., Lovblad, K. O., Hauert, C. A. & Vuilleumier, P. Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain 133, 880–894 (2009).

    Article  PubMed  Google Scholar 

  64. Medina, J. et al. Neural substrates of visuospatial processing in distinct reference frames: evidence from unilateral spatial neglect. J. Cogn. Neurosci. 21, 2073–2084 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hillis, A. E. et al. Anatomy of spatial attention: insights from perfusion imaging and hemispatial neglect in acute stroke. J. Neurosci. 25, 3161–3167 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Konen, C. S. & Kastner, S. Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J. Neurosci. 28, 8361–8375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rawley, J. B. & Constantinidis, C. Neural correlates of learning and working memory in the primate posterior parietal cortex. Neurobiol. Learn. Mem. 91, 129–138 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Friedman, H. R. & Goldman-Rakic, P. S. Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. J. Neurosci. 14, 2775–2788 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chafee, M. V. & Goldman-Rakic, P. S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79, 2919–2940 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Chafee, M. V. & Goldman-Rakic, P. S. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J. Neurophysiol. 83, 1550–1566 (2000). This reinforces the functional relevance of the parieto–prefrontal pathway by showing the reciprocal effect of inactivation in the posterior parietal and prefrontal cortices.

    Article  CAS  PubMed  Google Scholar 

  71. Todd, J. J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Sheremata, S. L., Bettencourt, K. C. & Somers, D. C. Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J. Neurosci. 30, 12581–12588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu, Y. & Chun, M. M. Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440, 91–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. van Asselen, M. et al. Object-location memory: a lesion-behavior mapping study in stroke patients. Brain Cogn. 71, 287–294 (2009).

    Article  PubMed  Google Scholar 

  75. Ravizza, S. M., Behrmann, M. & Fiez, J. A. Right parietal contributions to verbal working memory: spatial or executive? Neuropsychologia 43, 2057–2067 (2005).

    Article  PubMed  Google Scholar 

  76. Pierrot-Deseilligny, C., Ploner, C. J., Muri, R. M., Gaymard, B. & Rivaud-Pechoux, S. Effects of cortical lesions on saccadic: eye movements in humans. Ann. NY Acad. Sci. 956, 216–229 (2002).

    Article  PubMed  Google Scholar 

  77. Rafal, R. D. Oculomotor functions of the parietal lobe: effects of chronic lesions in humans. Cortex 42, 730–739 (2006).

    Article  PubMed  Google Scholar 

  78. Milner, A. D. & Goodale, M. A. Two visual systems re-viewed. Neuropsychologia 46, 774–785 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Snyder, L. H., Grieve, K. L., Brotchie, P. & Andersen, R. A. Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394, 887–891 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Sereno, M. I. & Huang, R. S. A human parietal face area contains aligned head-centered visual and tactile maps. Nature Neurosci. 9, 1337–1343 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Prevosto, V., Graf, W. & Ugolini, G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb. Cortex 20, 214–228 (2010).

    Article  PubMed  Google Scholar 

  82. Graziano, M. S., Cooke, D. F. & Taylor, C. S. Coding the location of the arm by sight. Science 290, 1782–1786 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Makin, T. R., Holmes, N. P. & Zohary, E. Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. J. Neurosci. 27, 731–740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, J., Reitzen, S. D., Kohlenstein, J. B. & Gardner, E. P. Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey. J. Neurophysiol. 102, 3310–3328 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Padberg, J. et al. Parallel evolution of cortical areas involved in skilled hand use. J. Neurosci. 27, 10106–10115 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blangero, A., Menz, M. M., McNamara, A. & Binkofski, F. Parietal modules for reaching. Neuropsychologia 47, 1500–1507 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Cavina-Pratesi, C., Ietswaart, M., Humphreys, G. W., Lestou, V. & Milner, A. D. Impaired grasping in a patient with optic ataxia: primary visuomotor deficit or secondary consequence of misreaching? Neuropsychologia 48, 226–234 (2010).

    Article  PubMed  Google Scholar 

  88. Culham, J. C. & Valyear, K. F. Human parietal cortex in action. Curr. Opin. Neurobiol. 16, 205–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Castiello, U. The neuroscience of grasping. Nature Rev. Neurosci. 6, 726–736 (2005).

    Article  CAS  Google Scholar 

  90. Goodale, M. A. et al. Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr. Biol. 4, 604–610 (1994). This provides evidence for the importance of the parieto–premotor pathway in visually-guided action by demonstrating that optic ataxia can result from lesions of the posterior parietal cortex. Also shows a double dissociation with patient D.F., whose perception but not action is impaired by ventral stream lesions.

    Article  CAS  PubMed  Google Scholar 

  91. Ishida, H., Nakajima, K., Inase, M. & Murata, A. Shared mapping of own and others' bodies in visuotactile bimodal area of monkey parietal cortex. J. Cogn. Neurosci. 22, 83–96 (2010).

    Article  PubMed  Google Scholar 

  92. Evangeliou, M. N., Raos, V., Galletti, C. & Savaki, H. E. Functional imaging of the parietal cortex during action execution and observation. Cereb. Cortex 19, 624–639 (2009).

    Article  PubMed  Google Scholar 

  93. Gardner, E. P. et al. Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors. J. Neurophysiol. 97, 387–406 (2007).

    Article  PubMed  Google Scholar 

  94. Clower, D. M., Dum, R. P. & Strick, P. L. Basal ganglia and cerebellar inputs to 'AIP'. Cereb. Cortex 15, 913–920 (2005).

    Article  PubMed  Google Scholar 

  95. Clower, D. M., West, R. A., Lynch, J. C. & Strick, P. L. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci. 21, 6283–6291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lewis, J. W. & Van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Rozzi, S., Ferrari, P. F., Bonini, L., Rizzolatti, G. & Fogassi, L. Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur. J. Neurosci. 28, 1569–1588 (2008). A broad survey of the response properties of neurons across the IPL, elucidating the distribution of various visual and somatosensory response properties. These distributions provide evidence for the shift in function between rIPL and cIPL and in doing so highlight the importance of these large-scale surveys of the response properties of single neurons.

    Article  PubMed  Google Scholar 

  98. Sakata, H. & Kusunoki, M. Organization of space perception: neural representation of three-dimensional space in the posterior parietal cortex. Curr. Opin. Neurobiol. 2, 170–174 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Chafee, M. V., Crowe, D. A., Averbeck, B. B. & Georgopoulos, A. P. Neural correlates of spatial judgement during object construction in parietal cortex. Cereb. Cortex 15, 1393–1413 (2005).

    Article  PubMed  Google Scholar 

  100. Chafee, M. V., Averbeck, B. B. & Crowe, D. A. Representing spatial relationships in posterior parietal cortex: single neurons code object-referenced position. Cereb. Cortex 17, 2914–2932 (2007).

    Article  PubMed  Google Scholar 

  101. Crowe, D. A., Averbeck, B. B. & Chafee, M. V. Neural ensemble decoding reveals a correlate of viewer- to object-centered spatial transformation in monkey parietal cortex. J. Neurosci. 28, 5218–5228 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Crowe, D. A., Averbeck, B. B., Chafee, M. V. & Georgopoulos, A. P. Dynamics of parietal neural activity during spatial cognitive processing. Neuron 47, 885–891 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Crowe, D. A., Chafee, M. V., Averbeck, B. B. & Georgopoulos, A. P. Neural activity in primate parietal area 7a related to spatial analysis of visual mazes. Cereb. Cortex 14, 23–34 (2004).

    Article  PubMed  Google Scholar 

  104. Gron, G., Wunderlich, A. P., Spitzer, M., Tomczak, R. & Riepe, M. W. Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neurosci. 3, 404–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Maguire, E. A. et al. Knowing where and getting there: a human navigation network. Science 280, 921–924 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsao, D. Y. et al. Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39, 555–568 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Guariglia, C., Piccardi, L., Iaria, G., Nico, D. & Pizzamiglio, L. Representational neglect and navigation in real space. Neuropsychologia 43, 1138–1143 (2005).

    Article  PubMed  Google Scholar 

  109. Kase, C. S., Troncoso, J. F., Court, J. E., Tapia, J. F. & Mohr, J. P. Global spatial disorientation. Clinico-pathologic correlations. J. Neurol. Sci. 34, 267–278 (1977).

    Article  CAS  PubMed  Google Scholar 

  110. Stark, M., Coslett, H. B. & Saffran, E. M. Impairment of a egocentric map of locations: implication for perception and action. Cogn. Neuropsychol. 13, 418–524 (1996).

    Article  Google Scholar 

  111. Huerta, M. F. & Kaas, J. H. Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J. Comp. Neurol. 293, 299–330 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Pierrot-Deseilligny, C., Milea, D. & Muri, R. M. Eye movement control by the cerebral cortex. Curr. Opin. Neurol. 17, 17–25 (2004).

    Article  PubMed  Google Scholar 

  113. Olson, C. R., Musil, S. Y. & Goldberg, M. E. Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. J. Neurophysiol. 76, 3285–3300 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. McCoy, A. N. & Platt, M. L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nature Neurosci. 8, 1220–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. McCoy, A. N., Crowley, J. C., Haghighian, G., Dean, H. L. & Platt, M. L. Saccade reward signals in posterior cingulate cortex. Neuron 40, 1031–1040 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Berman, R. A. et al. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum. Brain Mapp. 8, 209–225 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tanabe, J., Tregellas, J., Miller, D., Ross, R. G. & Freedman, R. Brain activation during smooth-pursuit eye movements. Neuroimage 17, 1315–1324 (2002).

    Article  PubMed  Google Scholar 

  118. Dean, H. L. & Platt, M. L. Allocentric spatial referencing of neuronal activity in macaque posterior cingulate cortex. J. Neurosci. 26, 1117–1127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vogt, B. A., Finch, D. M. & Olson, C. R. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 2, 435–443 (1992).

    CAS  PubMed  Google Scholar 

  120. Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural mechanisms of top-down attentional control. Nature Neurosci. 3, 284–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Mesulam, M. M., Nobre, A. C., Kim, Y. H., Parrish, T. B. & Gitelman, D. R. Heterogeneity of cingulate contributions to spatial attention. Neuroimage 13, 1065–1072 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Small, D. M. et al. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage 18, 633–641 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Bledowski, C., Rahm, B. & Rowe, J. B. What “works” in working memory? Separate systems for selection and updating of critical information. J. Neurosci. 29, 13735–13741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sato, N., Sakata, H., Tanaka, Y. L. & Taira, M. Context-dependent place-selective responses of the neurons in the medial parietal region of macaque monkeys. Cereb. Cortex 20, 846–858 (2010).

    Article  PubMed  Google Scholar 

  125. Sato, N., Sakata, H., Tanaka, Y. L. & Taira, M. Navigation-associated medial parietal neurons in monkeys. Proc. Natl Acad. Sci. USA 103, 17001–17006 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kovacs, G., Cziraki, C. & Greenlee, M. W. Neural correlates of stimulus-invariant decisions about motion in depth. Neuroimage 51, 329–335 (2010).

    Article  PubMed  Google Scholar 

  127. Bird, C. M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nature Rev. Neurosci. 9, 182–194 (2008).

    Article  CAS  Google Scholar 

  128. Aggleton, J. P. Understanding retrosplenial amnesia: insights from animal studies. Neuropsychologia 48, 2328–2338 (2010).

    Article  PubMed  Google Scholar 

  129. Burgess, N. Spatial cognition and the brain. Ann. NY Acad. Sci. 1124, 77–97 (2008).

    Article  PubMed  Google Scholar 

  130. Iaria, G., Chen, J. K., Guariglia, C., Ptito, A. & Petrides, M. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur. J. Neurosci. 25, 890–899 (2007).

    Article  PubMed  Google Scholar 

  131. Epstein, R. A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12, 388–396 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Maguire, E. A. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand. J. Psychol. 42, 225–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N. & Hirayama, K. Pure topographic disorientation due to right retrosplenial lesion. Neurology 49, 464–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Iaria, G., Bogod, N., Fox, C. J. & Barton, J. J. Developmental topographical disorientation: case one. Neuropsychologia 47, 30–40 (2009).

    Article  PubMed  Google Scholar 

  135. Ino, T. et al. Directional disorientation following left retrosplenial hemorrhage: a case report with fMRI studies. Cortex 43, 248–254 (2007).

    Article  PubMed  Google Scholar 

  136. Diekmann, V., Jurgens, R. & Becker, W. Deriving angular displacement from optic flow: a fMRI study. Exp. Brain Res. 195, 101–116 (2009).

    Article  PubMed  Google Scholar 

  137. Baumann, O. & Mattingley, J. B. Medial parietal cortex encodes perceived heading direction in humans. J. Neurosci. 30, 12897–12901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hashimoto, R., Tanaka, Y. & Nakano, I. Heading disorientation: a new test and a possible underlying mechanism. Eur. Neurol. 63, 87–93 (2010). This study is notable for both the specificity of the lesion (case 1), and the simplicity of the task used to demonstrate that RSC is crucial for updating representations after changes in heading.

    Article  PubMed  Google Scholar 

  139. Committeri, G. et al. Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J. Cogn. Neurosci. 16, 1517–1535 (2004).

    Article  PubMed  Google Scholar 

  140. Rosenbaum, R. S., Ziegler, M., Winocur, G., Grady, C. L. & Moscovitch, M. “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14, 826–835 (2004).

    Article  PubMed  Google Scholar 

  141. Ghaem, O. et al. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport 8, 739–744 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Suzuki, M., Tsukiura, T., Matsue, Y., Yamadori, A. & Fujii, T. Dissociable brain activations during the retrieval of different kinds of spatial context memory. Neuroimage 25, 993–1001 (2005).

    Article  PubMed  Google Scholar 

  143. Epstein, R. A., Parker, W. E. & Feiler, A. M. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci. 27, 6141–6149 (2007). This provides evidence for the sensitivity of the retrosplenial complex to different forms of scene processing consistent with its complex connectivity with the posterior parietal cortex, the parahippocampal cortex, and hippocampus. It also contrasts retrosplenial complex response with that of the parahippocampal cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Epstein, R. A. & Higgins, J. S. Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb. Cortex 17, 1680–1693 (2007).

    Article  PubMed  Google Scholar 

  145. Galati, G., Pelle, G., Berthoz, A. & Committeri, G. Multiple reference frames used by the human brain for spatial perception and memory. Exp. Brain Res. 206, 109–120 (2010).

    Article  PubMed  Google Scholar 

  146. Clark, B. J., Bassett, J. P., Wang, S. S. & Taube, J. S. Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex. J. Neurosci. 30, 5289–5302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Park, S. & Chun, M. M. Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47, 1747–1756 (2009).

    Article  PubMed  Google Scholar 

  148. Park, S., Intraub, H., Yi, D. J., Widders, D. & Chun, M. M. Beyond the edges of a view: boundary extension in human scene-selective visual cortex. Neuron 54, 335–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Gramann, K. et al. Human brain dynamics accompanying use of egocentric and allocentric reference frames during navigation. J. Cogn. Neurosci. 22, 2836–2849 (2009).

    Article  Google Scholar 

  150. Park, S., Chun, M. M. & Johnson, M. K. Refreshing and integrating visual scenes in Sscene-selective cortex. J. Cogn. Neurosci. 22, 2813–2822 (2009).

    Article  Google Scholar 

  151. Wolbers, T. & Buchel, C. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J. Neurosci. 25, 3333–3340 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Saleem, K. S., Price, J. L. & Hashikawa, T. Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J. Comp. Neurol. 500, 973–1006 (2007). This provides the crucial neuroanatomical evidence necessary to effectively subdivide and characterize the parahippocampal and perirhinal cortices in different macaque species.

    Article  CAS  PubMed  Google Scholar 

  153. Hecaen, H., Tzortzis, C. & Rondot, P. Loss of topographic memory with learning deficits. Cortex 16, 525–542 (1980).

    Article  CAS  PubMed  Google Scholar 

  154. Landis, T., Cummings, J. L., Benson, D. F. & Palmer, E. P. Loss of topographic familiarity. An environmental agnosia. Arch. Neurol. 43, 132–136 (1986).

    Article  CAS  PubMed  Google Scholar 

  155. Takahashi, N. & Kawamura, M. Pure topographical disorientation-the anatomical basis of landmark agnosia. Cortex 38, 717–725 (2002).

    Article  PubMed  Google Scholar 

  156. Alvarado, M. C. & Bachevalier, J. Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J. Neurosci. 25, 1599–1609 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Malkova, L. & Mishkin, M. One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J. Neurosci. 23, 1956–1965 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bachevalier, J. & Nemanic, S. Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18, 64–80 (2008).

    Article  PubMed  Google Scholar 

  159. Sato, N. & Nakamura, K. Visual response properties of neurons in the parahippocampal cortex of monkeys. J. Neurophysiol. 90, 876–886 (2003).

    Article  PubMed  Google Scholar 

  160. Barrash, J. A historical review of topographical disorientation and its neuroanatomical correlates. J. Clin. Exp. Neuropsychol. 20, 807–827 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Barrash, J., Damasio, H., Adolphs, R. & Tranel, D. The neuroanatomical correlates of route learning impairment. Neuropsychologia 38, 820–836 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Habib, M. & Sirigu, A. Pure topographical disorientation: a definition and anatomical basis. Cortex 23, 73–85 (1987).

    Article  CAS  PubMed  Google Scholar 

  163. Mendez, M. F. & Cherrier, M. M. Agnosia for scenes in topographagnosia. Neuropsychologia 41, 1387–1395 (2003).

    Article  PubMed  Google Scholar 

  164. Aguirre, G. K., Zarahn, E. & D'Esposito, M. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21, 373–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Burgess, N., Maguire, E. A., Spiers, H. J. & O'Keefe, J. A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14, 439–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Janzen, G. & van Turennout, M. Selective neural representation of objects relevant for navigation. Nature Neurosci. 7, 673–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G. & O'Keefe, J. Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. J. Cogn. Neurosci. 10, 61–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Aguirre, G. K., Detre, J. A., Alsop, D. C. & D'Esposito, M. The parahippocampus subserves topographical learning in man. Cereb. Cortex 6, 823–829 (1996).

    Article  CAS  PubMed  Google Scholar 

  170. Maguire, E. A. Hippocampal involvement in human topographical memory: evidence from functional imaging. Phil. Trans. R. Soc. Lond. B 352, 1475–1480 (1997).

    Article  CAS  Google Scholar 

  171. Buffalo, E. A., Bellgowan, P. S. & Martin, A. Distinct roles for medial temporal lobe structures in memory for objects and their locations. Learn. Mem. 13, 638–643 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Park, S., Brady, T. F., Greene, M. R. & Oliva, A. Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes. J. Neurosci. 31, 1333–1340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Walther, D. B., Caddigan, E., Fei-Fei, L. & Beck, D. M. Natural scene categories revealed in distributed patterns of activity in the human brain. J. Neurosci. 29, 10573–10581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bar, M., Aminoff, E. & Schacter, D. L. Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. J. Neurosci. 28, 8539–8544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rolls, E. T. Neurophysiological and computational analyses of the primate presubiculum, subiculum and related areas. Behav. Brain Res. 174, 289–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Taube, J. S. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30, 181–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Matsumura, N. et al. Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. J. Neurosci. 19, 2381–2393 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rolls, E. T. Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9, 467–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Georges-Francois, P., Rolls, E. T. & Robertson, R. G. Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. Cereb. Cortex 9, 197–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. O'Keefe, J. & Burgess, N. Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  182. Cressant, A., Muller, R. U. & Poucet, B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J. Neurosci. 17, 2531–2542 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Suthana, N. A., Ekstrom, A. D., Moshirvaziri, S., Knowlton, B. & Bookheimer, S. Y. Human hippocampal CA1 involvement during allocentric encoding of spatial information. J. Neurosci. 29, 10512–10519 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kumaran, D. & Maguire, E. A. The human hippocampus: cognitive maps or relational memory? J. Neurosci. 25, 7254–7259 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Aflalo, T. N. & Graziano, M. S. Organization of the macaque extrastriate visual cortex re-examined using the principle of spatial continuity of function. J. Neurophysiol. 105, 305–320 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Goldman-Rakic, P. S., Selemon, L. D. & Schwartz, M. L. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12, 719–743 (1984).

    Article  CAS  PubMed  Google Scholar 

  187. Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb. Cortex 4, 470–483 (1994).

    Article  CAS  PubMed  Google Scholar 

  188. Mishkin, M., Suzuki, W. A., Gadian, D. G. & Vargha-Khadem, F. Hierarchical organization of cognitive memory. Phil. Trans. R. Soc. Lond. B 352, 1461–1467 (1997).

    Article  CAS  Google Scholar 

  189. Durand, J. B. et al. Anterior regions of monkey parietal cortex process visual 3D shape. Neuron 55, 493–505 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Srivastava, S., Orban, G. A., De Maziere, P. A. & Janssen, P. A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse. J. Neurosci. 29, 10613–10626 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol. 83, 2580–2601 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. Cohen, Y. E. & Andersen, R. A. Reaches to sounds encoded in an eye-centered reference frame. Neuron 27, 647–652 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Phan, M. L., Schendel, K. L., Recanzone, G. H. & Robertson, L. C. Auditory and visual spatial localization deficits following bilateral parietal lobe lesions in a patient with Balint's syndrome. J. Cogn. Neurosci. 12, 583–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Pavani, F., Ladavas, E. & Driver, J. Auditory and multisensory aspects of visuospatial neglect. Trends Cogn. Sci. 7, 407–414 (2003).

    Article  PubMed  Google Scholar 

  195. di Pellegrino, G., Ladavas, E. & Farne, A. Seeing where your hands are. Nature 388, 730 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Drowos, D. B., Berryhill, M., Andre, J. M. & Olson, I. R. True memory, false memory, and subjective recollection deficits after focal parietal lobe lesions. Neuropsychology 24, 465–475 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Berryhill, M. E., Picasso, L., Arnold, R., Drowos, D. & Olson, I. R. Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia 48, 1385–1393 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Vinckier, F. et al. “What” and “where” in word reading: ventral coding of written words revealed by parietal atrophy. J. Cogn. Neurosci. 18, 1998–2012 (2006).

    Article  PubMed  Google Scholar 

  199. Maravita, A. & Iriki, A. Tools for the body (schema). Trends Cogn. Sci. 8, 79–86 (2004).

    Article  PubMed  Google Scholar 

  200. Mahon, B. Z. et al. Action-related properties shape object representations in the ventral stream. Neuron 55, 507–520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mahon, B. Z., Schwarzbach, J. & Caramazza, A. The representation of tools in left parietal cortex is independent of visual experience. Psychol. Sci. 21, 764–771 (2010).

    Article  PubMed  Google Scholar 

  202. Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H. & Damasio, A. R. Neural correlates of conceptual knowledge for actions. Cogn. Neuropsychol. 20, 409–432 (2003).

    Article  PubMed  Google Scholar 

  203. Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol. 58, 25–45 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank L. Ungerleider, M. Goodale, A. Martin, D. Leopold, M. Behrmann and D. Tsao for their extremely helpful comments.This research was supported by the Intramural Program of the US National Institutes of Health (NIH), National Institute of Mental Health (NIMH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwight J. Kravitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kadharbatcha S. Saleem's homepage

Laboratory of Brain and Cognition, US National Institute of Mental Health

Laboratory of Neuropsychology, US National Institute of Mental Health

Glossary

Retinotopic

An organization or map in visual cortex that reflects the spatial organization of visual stimuli as they appear on the retina.

Egocentric

An umbrella term for maps and/or patterns of modulation that can be defined in relation to some point on the observer (for example, head- or eye-centred maps).

Optic flow

The apparent motion of the environment caused by relative motion between the observer and the visual surround. During navigation, it can be a source of information about the observer's movement.

Neglect

A deficit resulting from cortical lesions that causes the observer to ignore part of visual space. This deficit can be egocentric, as in hemispatial neglect (in which one half of the visual field is ignored) or allocentric (for example, when the left side of all objects is ignored).

Allocentric

An umbrella term for maps and/or patterns of modulation that are defined in relation to an object exterior to the observer.

Somatotopic map

A map (or a pattern of neural modulation) based on distance from some body part. For example, a cell might increase its firing with decreasing distance of a stimulus from the face or hand

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravitz, D., Saleem, K., Baker, C. et al. A new neural framework for visuospatial processing. Nat Rev Neurosci 12, 217–230 (2011). https://doi.org/10.1038/nrn3008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing