Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure of bacteriophage T4 baseplate

Abstract

The baseplate of bacteriophage T4 is a multiprotein molecular machine that controls host cell recognition, attachment, tail sheath contraction and viral DNA ejection. We report here the three-dimensional structure of the baseplate–tail tube complex determined to a resolution of 12 Å by cryoelectron microscopy. The baseplate has a six-fold symmetric, dome-like structure 520 Å in diameter and 270 Å long, assembled around a central hub. A 940 Å–long and 96 Å–diameter tail tube, coaxial with the hub, is connected to the top of the baseplate. At the center of the dome is a needle-like structure that was previously identified as a cell puncturing device. We have identified the locations of six proteins with known atomic structures, and established the position and shape of several other baseplate proteins. The baseplate structure suggests a mechanism of baseplate triggering and structural transition during the initial stages of T4 infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the baseplate–tail tube complex.
Figure 2: Fit of the crystal structures, shown as Cα traces, into the cryoEM density.
Figure 3: Details of the baseplate structure.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Eiserling, F.A. & Black, L.W. Pathways in T4 morphogenesis. In Molecular Biology of Bacteriophage T4 (ed. Karam, J.D.) 209–212 (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  2. Kikuchi, Y. & King, J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J. Mol. Biol. 99, 695–716 (1975).

    Article  CAS  Google Scholar 

  3. Crawford, J. & Goldberg, E. The function of tail fibers in triggering baseplate expansion of bacteriophage T4. J. Mol. Biol. 139, 679–690 (1980).

    Article  CAS  Google Scholar 

  4. Crowther, R.A., Lenk, E.V., Kikuchi, Y. & King, J. Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. J. Mol. Biol. 116, 489–523 (1977).

    Article  CAS  Google Scholar 

  5. Kanamaru, S. et al. The structure of the bacteriophage T4 cell-puncturing device. Nature 415, 553–557 (2002).

    Article  CAS  Google Scholar 

  6. Coombs, D.H. & Arisaka, F. T4 tail structure and function. In Molecular Biology of Bacteriophage T4 (ed. Karam, J.D.) 259–281 (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  7. Watts, N.R.M. & Coombs, D.H. Structure of the bacteriophage T4 baseplate as determined by chemical cross-linking. J. Virol. 64, 143–154 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Watts, N.R.M., Hainfeld, J. & Coombs, D.H. Localization of the proteins gp7, gp8 and gp10 in the bacteriophage T4 baseplate with colloidal gold:F(ab)2 and undecagold:Fab' conjugates. J. Mol. Biol. 216, 315–325 (1990).

    Article  CAS  Google Scholar 

  9. Makhov, A.M. et al. The short tail-fiber of bacteriophage T4: molecular structure and a mechanism for its conformational transition. Virology 194, 117–127 (1993).

    Article  CAS  Google Scholar 

  10. Veprintseva, O.D., Deev, A.A., Ivanitski, G.R., Kuninski, A.S. & Khusainov, A.A. Issledovanie aberrantno formy reorganizatsii faga T4 (aberrant form of T4 phage reorganization). Dokl. Akad. Nauk SSSR 254, 496–499 (1980).

    CAS  PubMed  Google Scholar 

  11. Kostyuchenko, V.A. et al. The structure of bacteriophage T4 gene product 9: the trigger for tail contraction. Structure 7, 1213–1222 (1999).

    Article  CAS  Google Scholar 

  12. Leiman, P.G. et al. Structure of bacteriophage T4 gene product 11, the interface between the baseplate and short tail fibers. J. Mol. Biol. 301, 975–985 (2000).

    Article  CAS  Google Scholar 

  13. van Raaij, M.J., Schoehn, G., Burda, M.R. & Miller, S. Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. J. Mol. Biol. 314, 1137–1146 (2001).

    Article  CAS  Google Scholar 

  14. Leiman, P.G. et al. Structure and location of gene product 8 in the bacteriophage T4 baseplate. J. Mol. Biol. 328, 821–833 (2003).

    Article  CAS  Google Scholar 

  15. Plishker, M.F. & Berget, P.B. Isolation and characterization of precursors in bacteriophage T4 baseplate assembly. III. The carboxyl termini of protein P11 are required for assembly activity. J. Mol. Biol. 178, 699–709 (1984).

    Article  CAS  Google Scholar 

  16. Plishker, M.F., Rangwala, S.H. & Berget, P.B. Isolation of bacteriophage T4 baseplate proteins P7 and P8 and in vitro formation of the P10/P7/P8 assembly intermediate. J. Virol. 62, 400–406 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, L., Takeda, S., Inoue, M., Leiman, P.G. & Arisaka, F. Stoichiometry and inter-subunit interaction of the wedge initiation complex, gp10-gp11, of bacteriophage T4. Biochim. Biophys. Acta 1479, 286–292 (2000).

    Article  CAS  Google Scholar 

  18. Kanamaru, S., Gassner, N.C., Ye, N., Takeda, S. & Arisaka, F. The C-terminal fragment of the precursor tail lysozyme of bacteriophage T4 stays as a structural component of the baseplate after cleavage. J. Bacteriol. 181, 2739–2744 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomassen, E. et al. The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold. J. Mol. Biol. 331, 361–373 (2003).

    Article  CAS  Google Scholar 

  20. Meezen, E. & Wood, W.B. The sequence of gene product interaction in bacteriophage T4 core assembly. J. Mol. Biol. 58, 685–692 (1971).

    Article  Google Scholar 

  21. Duda, R.L., Gingery, M. & Eiserling, F.A. Potential length determiner and DNA injection protein is extruded from bacteriophage T4 tail tubes in vitro. Virology 151, 296–314 (1986).

    Article  CAS  Google Scholar 

  22. Abuladze, N.K., Gingery, M., Tsai, J. & Eiserling, F.A. Tail length determination in bacteriophage T4. Virology 199, 301–310 (1994).

    Article  CAS  Google Scholar 

  23. Moody, M.F. & Makowski, L. X-ray diffraction study of tail-tubes from bacteriophage T2L. J. Mol. Biol. 150, 217–244 (1981).

    Article  CAS  Google Scholar 

  24. Crowther, R.A. Mutants of bacteriophage T4 that produce infective fibreless particles. J. Mol. Biol. 137, 159–174 (1980).

    Article  CAS  Google Scholar 

  25. Kellenberger, E. et al. Functions and properties related to the tail fibers of bacteriophage T4. Virology 26, 419–440 (1965).

    Article  CAS  Google Scholar 

  26. Kellenberger, E., Stauffer, E., Haner, M., Lustig, A. & Karamata, D. Mechanism of the long tail-fiber deployment of bacteriophages T-even and its role in adsorption, infection and sedimentation. Biophys. Chem. 59, 41–59 (1996).

    Article  CAS  Google Scholar 

  27. Moody, M.F. Sheath of bacteriophage T4. III. Contraction mechanism deduced from partially contracted sheaths. J. Mol. Biol. 80, 613–635 (1973).

    Article  CAS  Google Scholar 

  28. King, J. & Mykolajewycz, N. Bacteriophage T4 tail assembly: proteins of the sheath, core, and baseplate. J. Mol. Biol. 75, 339–358 (1973).

    Article  CAS  Google Scholar 

  29. Baker, T.S., Olson, N.H. & Fuller, S.D. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862–922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Conway, J.F. & Steven, A.C. Methods for reconstructing density maps of “single” particles from cryoelectron micrographs to subnanometer resolution. J. Struct. Biol. 128, 106–118 (1999).

    Article  CAS  Google Scholar 

  31. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  32. Wriggers, W. & Chacón, P. Modeling tricks and fitting techniques for multiresolution structures. Structure 9, 779–788 (2001).

    Article  CAS  Google Scholar 

  33. Rossmann, M.G., Bernal, R. & Pletnev, S.V. Combining electron microscopic with X-ray crystallographic structures. J. Struct. Biol. 136, 190–200 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for a Keck Foundation Grant for the purchase of the CM300 FEG electron microscope. We thank S. Wilder and C. Towell for help in the preparation of the manuscript. The work was supported by a US National Science Foundation grant to M.G.R., a Howard Hughes Medical Institute grant and Russian Fund for Basic Research grant to V.V.M. and a Russian Fund for Basic Research grant to V.A.K. This work is an initiation of a T4 structural genomics project supported by a Human Frontiers Science Program grant to M.G.R., F.A. and V.V.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G Rossmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuchenko, V., Leiman, P., Chipman, P. et al. Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Mol Biol 10, 688–693 (2003). https://doi.org/10.1038/nsb970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing