Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1

Abstract

The PAS (PER-ARNT-SIM) helix-loop-helix transcription factor BMAL1 (also known as MOP3) is an essential component of the circadian pacemaker in mammals. Here we show that the retinoic acid receptor–related orphan receptor RORα (NR1F1) directly activates transcription of Bmal1 through two conserved RORα response elements that are required for cell-autonomous transcriptional oscillation of Bmal1 mRNA. Positive involvement of RORα in generation of the Bmal1 circadian oscillation was verified by behavioral analyses of RORα-deficient staggerer mice that showed aberrant locomotor activity and unstable rhythmicity. In cultured cells, loss of endogenous RORα protein resulted in a dampened circadian rhythm of Bmal1 transcription, further indicating that RORα is a functional component of the cell-autonomous core circadian clock. These results indicate that RORα acts to promote Bmal1 transcription, thereby maintaining a robust circadian rhythm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal mRNA expression patterns of Rev-erbα and Rorα, and effects of overexpression of REV-ERB or/and ROR on Bmal1 transcription.
Figure 2: Effect of a dominant-negative RORα on the circadian transcription of Bmal1 Transcriptional oscillation of Bmal1 was monitored by using a cell culture–based luminescent reporter assay, in the presence or absence of β-galactosidase or a dominant-negative form of RORα.
Figure 3: Region on the Bmal1 promoter required for RORα-mediated transactivation and transcriptional oscillation.
Figure 4: Temporal pattern of RORα binding to the Bmal1 promoter region in pull-down assays.
Figure 5: Circadian phenotypes of RORα-deficient staggerer mice.
Figure 6: Effect of RORα deficiency on the cell-autonomous circadian transcription of Bmal1.
Figure 7: Schematic model representing RORα-mediated control of cell-autonomous Bmal1 oscillations.

Similar content being viewed by others

References

  1. Menaker, M. Circadian rhythms. Circadian photoreception. Science 299, 213–214 (2003).

    Article  CAS  Google Scholar 

  2. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  Google Scholar 

  3. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685 (2000).

    Article  CAS  Google Scholar 

  4. Schibler, U. & Sassone-Corsi, P. A web of circadian pacemakers. Cell 111, 919–922 (2002).

    Article  CAS  Google Scholar 

  5. Akashi, M. & Nishida, E. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev. 14, 645–649 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Balsalobre, A., Marcacci, L. & Schibler, U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr. Biol. 10, 1291–1294 (2000).

    Article  CAS  Google Scholar 

  7. Glossop, N.R. & Hardin, P.E. Central and peripheral circadian oscillator mechanisms in flies and mammals. J. Cell Sci. 115, 3369–3377 (2002).

    CAS  PubMed  Google Scholar 

  8. Hastings, M.H., Reddy, A.B. & Maywood, E.S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649–661 (2003).

    Article  CAS  Google Scholar 

  9. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  Google Scholar 

  10. Dunlap, J.C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).

    Article  CAS  Google Scholar 

  11. Allada, R., Emery, P., Takahashi, J.S. & Rosbash, M. Stopping time: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci. 24, 1091–1119 (2001).

    Article  CAS  Google Scholar 

  12. Young, M.W. & Kay, S.A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702–715 (2001).

    Article  CAS  Google Scholar 

  13. Reppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  Google Scholar 

  14. Takumi, T. et al. A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17, 4753–4759 (1998).

    Article  CAS  Google Scholar 

  15. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  Google Scholar 

  16. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    Article  CAS  Google Scholar 

  17. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  Google Scholar 

  18. Storch, K.F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  CAS  Google Scholar 

  19. Bunger, M.K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000).

    Article  CAS  Google Scholar 

  20. Shearman, L.P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    Article  CAS  Google Scholar 

  21. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  Google Scholar 

  22. Ueda, H.R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534–539 (2002).

    Article  CAS  Google Scholar 

  23. Forman, B.M. et al. Cross-talk among ROR α 1 and the Rev-erb family of orphan nuclear receptors. Mol. Endocrinol. 8, 1253–1261 (1994).

    CAS  PubMed  Google Scholar 

  24. Yamamoto, T. et al. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol. Biol. 5, 18 (2004).

    Article  Google Scholar 

  25. Nakajima, Y. et al. Bidirectional role of orphan nuclear receptor RORα in clock gene transcriptions demonstrated by a novel reporter assay system. FEBS Lett. 565, 122–126 (2004).

    Article  CAS  Google Scholar 

  26. Hamilton, B.A. et al. Disruption of the nuclear hormone receptor RORα in staggerer mice. Nature 379, 736–739 (1996).

    Article  CAS  Google Scholar 

  27. Chauvet, C., Bois-Joyeux, B. & Danan, J.L. Retinoic acid receptor-related orphan receptor (ROR) α4 is the predominant isoform of the nuclear receptor RORα in the liver and is up-regulated by hypoxia in HepG2 human hepatoma cells. Biochem J. 364, 449–456 (2002).

    Article  CAS  Google Scholar 

  28. Dilworth, F.J. & Chambon, P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20, 3047–3054 (2001).

    Article  CAS  Google Scholar 

  29. Giguere, V. Orphan nuclear receptors: from gene to function. Endocr. Rev. 20, 689–725 (1999).

    CAS  PubMed  Google Scholar 

  30. Jetten, A.M., Kurebayashi, S. & Ueda, E. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog. Nucleic Acid Res. Mol. Biol. 69, 205–247 (2001).

    Article  CAS  Google Scholar 

  31. Andre, E. et al. Disruption of retinoid-related orphan receptor beta changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice. EMBO J. 17, 3867–3877 (1998).

    Article  CAS  Google Scholar 

  32. Sato, T.K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    Article  CAS  Google Scholar 

  33. Kallen, J.A. et al. X-ray structure of the hRORα LBD at 1.63 Å: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORα. Structure 10, 1697–1707 (2002).

    Article  CAS  Google Scholar 

  34. Simons, K. & Ikonen, E. How cells handle cholesterol. Science 290, 1721–1726 (2000).

    Article  CAS  Google Scholar 

  35. Balasubramaniam, S., Szanto, A. & Roach, P.D. Circadian rhythm in hepatic low-density-lipoprotein (LDL)-receptor expression and plasma LDL levels. Biochem J. 298, 39–43 (1994).

    Article  CAS  Google Scholar 

  36. Wuarin, J. et al. The role of the transcriptional activator protein DBP in circadian liver gene expression. J. Cell Sci. Suppl. 16, 123–127 (1992).

    Article  CAS  Google Scholar 

  37. Miki, N., Ikuta, M. & Matsui, T. Hypoxia-induced activation of the retinoic acid receptor-related orphan receptor α4 gene by an interaction between hypoxia-inducible factor-1 and Sp1. J. Biol. Chem. 279, 15025–15031 (2004).

    Article  CAS  Google Scholar 

  38. Chauvet, C., Bois-Joyeux, B., Berra, E., Pouyssegur, J. & Danan, J.L. The gene encoding human retinoic acid-receptor-related orphan receptor α is a target for hypoxia-inducible factor 1. Biochem. J. 384, 79–85 (2004).

    Article  CAS  Google Scholar 

  39. Bunn, H.F., Gu, J., Huang, L.E., Park, J.W. & Zhu, H. Erythropoietin: a model system for studying oxygen-dependent gene regulation. J. Exp. Biol. 201, 1197–1201 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Akashi, M., Tsuchiya, Y., Yoshino, T. & Nishida, E. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIε) and CKIδ in cultured cells. Mol. Cell. Biol. 22, 1693–1703 (2002).

    Article  CAS  Google Scholar 

  41. Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 17, 1340–1345 (2003).

    Article  CAS  Google Scholar 

  42. Shi, Y. Mammalian RNAi for the masses. Trends Genet. 19, 9–12 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Sakakida, S. Yoshiba, S. Tsuboi, C. Matsubara and T. Ichise for their expert technical assistance, and all the members of the laboratory for help, reagents and discussions. We express our great appreciation to J. Dunlap, A. Sehgal, G. Block and R. Evans for their reviewing the manuscript and also thank T. Mamine, E. Nishida and K. Tanaka for general support. We are grateful to T. Kono for the siRNA expression vector and S. Ishii for the pDECAP vector. This work was supported in part by research grants from the Japan Ministry of Education, Culture, Sports, Science and Technology and Sony Corporation. The support of fellowships from the Japan Society for the Promotion of Science (M.A.) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Takumi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effect of RORα antisense on long dsRNA. (PDF 347 kb)

Supplementary Fig. 2

Effect of cobalt chloride on BMAL1 oscillation. (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akashi, M., Takumi, T. The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12, 441–448 (2005). https://doi.org/10.1038/nsmb925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing