Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition

Abstract

As the performance of photoelectrodes used for solar water splitting continues to improve, enhancing the long-term stability of the photoelectrodes becomes an increasingly crucial issue. In this study, we report that tuning the composition of the electrolyte can be used as a strategy to suppress photocorrosion during solar water splitting. Anodic photocorrosion of BiVO4 photoanodes involves the loss of V5+ from the BiVO4 lattice by dissolution. We demonstrate that the use of a V5+-saturated electrolyte, which inhibits the photooxidation-coupled dissolution of BiVO4, can serve as a simple yet effective method to suppress anodic photocorrosion of BiVO4. The V5+ species in the solution can also incorporate into the FeOOH/NiOOH oxygen-evolution catalyst layer present on the BiVO4 surface during water oxidation, further enhancing water-oxidation kinetics. The effect of the V5+ species in the electrolyte on both the long-term photostability of BiVO4 and the performance of the FeOOH/NiOOH oxygen-evolution catalyst layer is systematically elucidated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology of nanoporous BiVO4 electrode.
Fig. 2: Performance and stability of BiVO4/FeOOH/NiOOH.
Fig. 3: Effect of V5+ in the electrolyte on the performance and stability of BiVO4/FeOOH/NiOOH.
Fig. 4: Effect of V5+ in the electrolyte on the OEC layer.
Fig. 5: Long-term photostability test.

Similar content being viewed by others

References

  1. Kudo, A., Omori, K. & Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999).

    Article  Google Scholar 

  2. Sayama, K. et al. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 110, 11352–11360 (2006).

    Article  Google Scholar 

  3. Park, Y., McDonald, K. J. & Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013).

    Article  Google Scholar 

  4. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  Google Scholar 

  5. Park, H. S. et al. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J. Phys. Chem. C 115, 17870–17879 (2011).

    Article  Google Scholar 

  6. Liang, Y., Tsubota, T., Mooij, L. P. A. & van de Krol, R. Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J. Phys. Chem. C 115, 17594–17598 (2011).

    Article  Google Scholar 

  7. Parmar, K. P. S. et al. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. ChemSusChem 5, 1926–1934 (2012).

    Article  Google Scholar 

  8. Luo, W. et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 4, 4046–4051 (2011).

    Article  Google Scholar 

  9. Park, Y., Kang, D. & Choi, K.-S. Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes. Phys. Chem. Chem. Phys. 16, 1238–1246 (2014).

    Article  Google Scholar 

  10. Seabold, J. A., Zhu, K. & Neale, N. R. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport. Phys. Chem. Chem. Phys. 16, 1121–1131 (2014).

    Article  Google Scholar 

  11. Jo, W. J. et al. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem. Int. Ed. 51, 3147–3151 (2012).

    Article  Google Scholar 

  12. Wang, G. et al. Computational and photoelectrochemical study of hydrogenated bismuth vanadate. J. Phys. Chem. C 117, 10957–10964 (2013).

    Article  Google Scholar 

  13. Kim, T. W., Ping, Y., Galli, G. A. & Choi, K.-S. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 6, 8769 (2015).

    Article  Google Scholar 

  14. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  Google Scholar 

  15. Kuang, Y. et al. A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting. Adv. Energy Mater. 6, 1501645 (2016).

    Article  Google Scholar 

  16. Zhong, D. K., Choi, S. & Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133, 18370–18377 (2011).

    Article  Google Scholar 

  17. Seabold, J. A. & Choi, K.-S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134, 2186–2192 (2012).

    Article  Google Scholar 

  18. Lichterman, M. F. et al. Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J. Phys. Chem. Lett. 4, 4188–4191 (2013).

    Article  Google Scholar 

  19. Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate–silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    Article  Google Scholar 

  20. Chen, Y.-S., Manser, J. S. & Kamat, P. V. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J. Am. Chem. Soc. 137, 974–981 (2015).

    Article  Google Scholar 

  21. Pihosh, Y. et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015).

    Article  Google Scholar 

  22. Kim, J. H. et al. Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat. Commun. 7, 13380 (2016).

    Article  Google Scholar 

  23. Kuang, Y. et al. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nat. Energy 2, 16191 (2016).

    Article  Google Scholar 

  24. Bae, D. et al. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev. 46, 1933–1954 (2017).

    Article  Google Scholar 

  25. Kohl, P. A., Frank, S. N. & Bard, A. J. Semiconductor electrodes: XI. Behavior of n-and p-type single crystal semiconductors covered with thin films. J. Electrochem. Soc. 124, 225–229 (1977).

    Article  Google Scholar 

  26. Paracchino, A. et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011).

    Article  Google Scholar 

  27. Gissler, W., McEvoy, A. J. & Graetzel, M. The effect of sputtered RuO2 overlayers on the photoelectrochemical behavior of CdS electrodes. J. Electrochem. Soc. 129, 1733–1736 (1982).

    Article  Google Scholar 

  28. Govindaraju, G. V., Wheeler, G. P., Lee, D. & Choi, K.-S. Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes. Chem. Mater. 29, 355–370 (2017).

    Article  Google Scholar 

  29. Toma, F. M. et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nat. Commun. 7, 12012 (2016).

    Article  Google Scholar 

  30. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, Houston, 1974).

    Google Scholar 

  31. Kanan, M. W., Surendranath, Y. & Nocera, D. G. Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109–114 (2009).

    Article  Google Scholar 

  32. Fan, K. et al. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016).

    Article  Google Scholar 

  33. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  Google Scholar 

  34. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T. M. & Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 5, 5380–5387 (2015).

    Article  Google Scholar 

  35. McDonald, K. J. & Choi, K.-S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 5, 8553–8557 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) under the NSF Center CHE-1305124. The authors thank D.-H. Nam for his valuable suggestions and discussion for the study.

Author information

Authors and Affiliations

Authors

Contributions

K.-S.C. and D.K.L. planned the experiments, interpreted the experimental results and wrote the manuscript. D.K.L. performed all experiments and K.-S.C. supervised the project.

Corresponding author

Correspondence to Kyoung-Shin Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 and Supplementary Tables 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.K., Choi, KS. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy 3, 53–60 (2018). https://doi.org/10.1038/s41560-017-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-017-0057-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing