Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

From planar boron clusters to borophenes and metalloborophenes

Abstract

Elemental boron and its compounds exhibit unusual structures and chemical bonding owing to the electron deficiency of boron. Joint photoelectron spectroscopy and theoretical studies over the past decade have revealed that boron clusters possess planar or quasi-planar (2D) structures up to relatively large sizes, laying the foundations for the discovery of boron-based nanostructures. The observation of the 2D B36 cluster provided the first experimental evidence that extended boron monolayers with hexagonal vacancies were potentially viable and led to the proposition of ‘borophenes’ — boron analogues of 2D carbon structures such as graphene. Metal-doping can expand the range of potential nanostructures based on boron. Recent studies have shown that the CoB18 and RhB18 clusters possess unprecedented 2D structures, in which the dopant metal atom is part of the 2D boron network. These doped 2D clusters suggest the possibilities of creating metal-doped borophenes with potentially tunable electronic, optical and magnetic properties. Here, we discuss the recent experimental and theoretical advances in 2D boron and doped boron clusters, as well as their implications for metalloborophenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of size-selected boron clusters.
Figure 2: Borophenes.
Figure 3: Metal-doped boron clusters.
Figure 4: The CoB18 cluster.
Figure 5: The RhB18 cluster.
Figure 6: Metalloborophenes.

Similar content being viewed by others

References

  1. Lipscomb, W. N. The boranes and their relatives. Science 196, 1047–1055 (1977).

    CAS  PubMed  Google Scholar 

  2. Kroto, H. W., Heath, J. R., O’Brian, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Google Scholar 

  3. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Google Scholar 

  4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  PubMed  Google Scholar 

  5. Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

    CAS  PubMed  Google Scholar 

  6. Boustani, I. & Quandt, A. Nanotubules of bare boron clusters: ab initio and density functional study. Europhys. Lett. 39, 527–532 (1997).

    CAS  Google Scholar 

  7. Gindulyte, A., Lipscomb, W. N. & Massa, L. Proposed boron nanotubes. Inorg. Chem. 37, 6544–6545 (1998).

    CAS  PubMed  Google Scholar 

  8. Tang, H. & Ismail-Beigi, S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007).

    PubMed  Google Scholar 

  9. Yang, X., Ding, Y. & Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B 77, 041402 (2008).

    Google Scholar 

  10. Szwacki, N. G., Sadrzadeh, A. & Yakobson, B. I. B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 166804 (2007).

    Google Scholar 

  11. Prasad, D. L. V. K. & Jemmis, E. D. Stuffing improves the stability of fullerenelike boron clusters. Phys. Rev. Lett. 100, 165504 (2008).

    PubMed  Google Scholar 

  12. Li, H. et al. Icosahedral B12-containing core-shell structures of B80 . Chem. Commun. 46, 3878–3880 (2010).

    CAS  Google Scholar 

  13. De, S. et al. Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon. Phys. Rev. Lett. 106, 225502 (2011).

    PubMed  Google Scholar 

  14. Li, F. Y. et al. B80 and B101–103 clusters: remarkable stability of the core-shell structures established by validated density functionals. J. Chem. Phys. 136, 074302 (2012).

    PubMed  Google Scholar 

  15. Alexandrova, A. N., Boldyrev, A. I., Zhai, H. J. & Wang, L. S. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250, 2811–2866 (2006).

    CAS  Google Scholar 

  16. Sergeeva, A. P. et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014).

    CAS  PubMed  Google Scholar 

  17. Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 35, 69–142 (2016).

    Google Scholar 

  18. Hanley, L., Whitten, J. L. & Anderson, S. L. Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities. J. Phys. Chem. 92, 5803–5812 (1988).

    CAS  Google Scholar 

  19. Ruatta, S. A., Hanley, L. & Anderson, S. L. Dynamics of boron cluster ion reactions with deuterium: adduct formation and decay. J. Chem. Phys. 91, 226–239 (1989).

    CAS  Google Scholar 

  20. Hintz, P. A., Ruatta, S. A. & Anderson, S. L. Interaction of boron cluster ions with water: single collision dynamics and sequential etching. J. Chem. Phys. 92, 292–303 (1990).

    CAS  Google Scholar 

  21. Hintz, P. A., Sowa, M. B., Ruatta, S. A. & Anderson, S. L. Reactions of boron cluster ions (Bn+. n = 2–24) with N2O: NO versus NN bond activation as a function of size. J. Chem. Phys. 94, 6446–6458 (1991).

    CAS  Google Scholar 

  22. Zhai, H. J., Wang, L. S., Alexandrova, A. N. & Boldyrev, A. I. Electronic structure and chemical bonding of B5 and B5 by photoelectron spectroscopy and ab initio calculations. J. Chem. Phys. 117, 7917–7924 (2002).

    CAS  Google Scholar 

  23. Alexandrova, A. N. et al. Structure and bonding in B6 and B6: planarity and antiaromaticity. J. Phys. Chem. A 107, 1359–1369 (2003).

    CAS  Google Scholar 

  24. Zhai, H. J., Alexandrova, A. N., Birch, K. A., Boldyrev, A. I. & Wang, L. S. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew. Chem. Int. Ed. 42, 6004–6008 (2003).

    CAS  Google Scholar 

  25. Zhai, H. J., Kiran, B., Li, J. & Wang, L. S. Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003).

    CAS  PubMed  Google Scholar 

  26. Alexandrova, A. N., Boldyrev, A. I., Zhai, H. J. & Wang, L. S. Electronic structure, isomerism, and chemical bonding in B7 and B7 . J. Phys. Chem. A 108, 3509–3517 (2004).

    CAS  Google Scholar 

  27. Kiran, B. et al. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl Acad. Sci. USA 102, 961–964 (2005).

    CAS  PubMed  Google Scholar 

  28. Sergeeva, A. P., Zubarev, D. Y., Zhai, H. J., Boldyrev, A. I. & Wang, L. S. A. Photoelectron spectroscopic and theoretical study of B16 and B162−: an all-boron naphthalene. J. Am. Chem. Soc. 130, 7244–7246 (2008).

    CAS  PubMed  Google Scholar 

  29. Huang, W. et al. A concentric planar doubly π-aromatic B19 cluster. Nat. Chem. 2, 202–206 (2010).

    PubMed  Google Scholar 

  30. Sergeeva, A. P., Averkiev, B. B., Zhai, H. J., Boldyrev, A. I. & Wang, L. S. All-boron analogues of aromatic hydrocarbons: B17 and B18. J. Chem. Phys. 134, 224304 (2011).

    PubMed  Google Scholar 

  31. Piazza, Z. A. et al. A photoelectron spectroscopy and ab initio study of B21: negatively charged boron clusters continue to be planar at 21. J. Chem. Phys. 136, 104310 (2012).

    PubMed  Google Scholar 

  32. Sergeeva, A. P. et al. B22 and B23: all-boron analogues of anthracene and phenanthrene. J. Am. Chem. Soc. 134, 18065–18073 (2012).

    CAS  PubMed  Google Scholar 

  33. Popov, I. A., Piazza, Z. A., Li, W. L., Wang, L. S. & Boldyrev, A. I. A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24 cluster. J. Chem. Phys. 139, 144307 (2013).

    PubMed  Google Scholar 

  34. Piazza, Z. A. et al. A photoelectron spectroscopy and ab initio study of the structures and chemical bonding of the B25 cluster. J. Chem. Phys. 141, 034303 (2014).

    PubMed  Google Scholar 

  35. Li, W. L., Zhao, Y. F., Hu, H. S., Li, J. & Wang, L. S. [B30]: a quasiplanar chiral boron cluster. Angew. Chem. Int. Ed. 53, 5540–5545 (2014).

    CAS  Google Scholar 

  36. Li, W. L., Pal, R., Piazza, Z. A., Zeng, X. C. & Wang, L. S. B27: appearance of the smallest planar boron cluster containing a hexagonal vacancy. J. Chem. Phys. 142, 204305 (2015).

    PubMed  Google Scholar 

  37. Wang, Y. J. et al. Observation and characterization of the smallest borospherene, B28 and B28 . J. Chem. Phys. 144, 064307 (2016).

    PubMed  Google Scholar 

  38. Li, H. R. et al. Competition between quasi-planar and cage-like structures in the B29 cluster: photoelectron spectroscopy and ab initio calculations. Phys. Chem. Chem. Phys. 18, 29147–29155 (2016).

    CAS  PubMed  Google Scholar 

  39. Luo, X. M. et al. B26: the smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem. Phys. Lett. 683, 336–341 (2017).

    CAS  Google Scholar 

  40. Hubert, H. et al. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391, 376–378 (1998).

    Google Scholar 

  41. White, M. A., Cerqueira, A. B., Whiteman, C. A., Johnson, M. B. & Ogitsu, T. Determination of phase stability of elemental boron. Angew. Chem. Int. Ed. 54, 3626–3629 (2015).

    CAS  Google Scholar 

  42. Kawai, R. & Weare, J. H. Instability of the B12 icosahedral cluster: rearrangement to a lower energy structure. J. Chem. Phys. 95, 1151–1159 (1991).

    CAS  Google Scholar 

  43. Boustani, I. Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn. n = 2–14. Phys. Rev. B 55, 16426–16438 (1997).

    CAS  Google Scholar 

  44. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    CAS  PubMed  Google Scholar 

  45. Zubarev, D. Y. & Boldyrev, A. I. Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 28, 251–268 (2007).

    CAS  PubMed  Google Scholar 

  46. Fowler, J. E. and Ugalde, J. M. The curiously stable B13+ cluster and its neutral and anionic counterparts: the advantage of planarity. J. Phys. Chem. A 104, 397–403 (2000).

    CAS  Google Scholar 

  47. Boldyrev, A. I. & Wang, L. S. Beyond organic chemistry: aromaticity in atomic clusters. Phys. Chem. Chem. Phys. 18, 11589–11605 (2016).

    CAS  PubMed  Google Scholar 

  48. Piazza, Z. A. et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014).

    PubMed  Google Scholar 

  49. Li, W. L. et al. The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J. Am. Chem. Soc. 136, 12257–12260 (2014).

    CAS  PubMed  Google Scholar 

  50. Chen, Q. et al. 2D B38 and B37 clusters with a double-hexagonal vacancy: molecular motifs for borophenes. Nanoscale 9, 4550–4557 (2017).

    CAS  PubMed  Google Scholar 

  51. Zhai, H. J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).

    CAS  PubMed  Google Scholar 

  52. Romanescu, C., Galeev, T. R., Li, W. L., Boldyrev, A. I. & Wang, L. S. Aromatic metal-centered monocyclic boron rings: Co©B8 and Ru©B9. Angew. Chem. Int. Ed. 50, 9334–9337 (2011).

    CAS  Google Scholar 

  53. Li, W. L. et al. Transition-metal-centered nine-membered boron rings: M©B9 and M©B9 (M = Rh. Ir). J. Am. Chem. Soc. 134, 165–168 (2012).

    CAS  PubMed  Google Scholar 

  54. Galeev, T. R., Romanescu, C., Li, W. L., Wang, L. S. & Boldyrev, A. I. Observation of the highest coordination number in planar species: decacoordinated Ta©B10 and Nb©B10 anions. Angew. Chem. Int. Ed. 51, 2101–2105 (2012).

    CAS  Google Scholar 

  55. Romanescu, C. et al. Experimental and computational evidence of octa- and nona-coordinated planar iron-doped boron clusters: Fe©B8 and Fe©B9. J. Organomet. Chem. 721722, 148–154 (2012).

    Google Scholar 

  56. Romanescu, C., Galeev, T. R., Li, W. L., Boldyrev, A. I. & Wang, L. S. Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. Acc. Chem. Res. 46, 350–358 (2013).

    CAS  PubMed  Google Scholar 

  57. Popov, I. A., Jian, T., Lopez, G. V., Boldyrev, A. I. & Wang, L. S. Cobalt-centred boron molecular drums with the highest coordination number in the CoB16 cluster. Nat. Commun. 6, 8654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jian, T. et al. Manganese-centered tubular boron cluster – MnB16: a new class of transition-metal molecules. J. Chem. Phys. 144, 154310 (2016).

    PubMed  Google Scholar 

  59. Li, W. L. et al. Observation of a metal-centered B2-Ta@B18 tubular molecular rotor and a perfect Ta@B20 boron drum with the record coordination number of twenty. Chem. Commun. 53, 1587–1590 (2017).

    CAS  Google Scholar 

  60. Li, W. L. et al. The planar CoB18 cluster as a motif for metallo-borophenes. Angew. Chem. Int. Ed. 55, 7358–7363 (2016).

    CAS  Google Scholar 

  61. Jian, T. et al. Competition between drum and quasi-planar structures in RhB18: motifs for metallo-boronanotubes and metallo-borophenes. Chem. Sci. 7, 7020–7027 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, H., Li, Y., Hou, J., Tu, K. & Chen, Z. FeB6 monolayers: the graphene-like material with hypercoordinate transition metal. J. Am. Chem. Soc. 138, 5644–5651 (2016).

    CAS  PubMed  Google Scholar 

  63. Zhang, H., Li, Y., Hou, J., Du, A. & Chen, Z. Dirac state in the FeB2 monolayer with graphene-like boron sheet. Nano Lett. 16, 6124–6129 (2016).

    CAS  PubMed  Google Scholar 

  64. Li, J. et al. Global minimum of two-dimensional FeB6 and an oxidation induced negative Poisson's ratio: a new stable allotrope. J. Mater. Chem. C 4, 9613–9621 (2016).

    CAS  Google Scholar 

  65. Li, J. et al. Voltage-gated spin-filtering properties and global minimum of planar MnB6, and half-metallicity and room-temperature ferromagnetism of its oxide sheet. J. Mater. Chem. C 4, 10866–10875 (2016).

    CAS  Google Scholar 

  66. Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Feng, B. et al. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016).

    CAS  PubMed  Google Scholar 

  68. Zhao, J. et al. B28: the smallest all-boron cage from an ab initio global search. Nanoscale 7, 15086–15090 (2015).

    CAS  PubMed  Google Scholar 

  69. Romanescu, C., Sergeeva, A. P., Li, W. L., Boldyrev, A. I. & Wang, L. S. Planarization of B7 and B12 clusters by isoelectronic substitution: AlB6 and AlB11. J. Am. Chem. Soc. 133, 8646–8653 (2011).

    CAS  PubMed  Google Scholar 

  70. Romanescu, C., Harding, D. J., Fielicke, A. & Wang, L. S. Probing the structures of neutral boron clusters using infrared/vacuum ultraviolet two color ionization: B11, B16, and B17 . J. Chem. Phys. 137, 014317 (2012).

    PubMed  Google Scholar 

  71. Czekner, J., Cheung, L. F. & Wang, L. S. Probing the structures of neutral B11 and B12 using high resolution photoelectron imaging of B11 and B12. J. Phys. Chem. C 121, 10752–10759 (2017).

    CAS  Google Scholar 

  72. Oger, E. et al. Boron cluster cations: transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 46, 8503–8506 (2007).

    CAS  Google Scholar 

  73. Boustani, I. Systematic LSD investigation on cationic boron clusters: Bn+ (n = 2–14). Int. J. Quantum Chem. 52, 1081–1111 (1994).

    CAS  Google Scholar 

  74. Ricca, A. & Bauschlicher, C. W. The structure and stability of Bn+ clusters. Chem. Phys. Lett. 208, 233–242 (1996).

    CAS  Google Scholar 

  75. Fagiani, M. R. et al. Structure and fluxionality of B13+ probed by infrared photodissociation spectroscopy. Angew. Chem. Int. Ed. 56, 501–504 (2017).

    CAS  Google Scholar 

  76. Martinez-Guajardo, G. et al. Unraveling phenomenon of internal rotation in B13+ through chemical bonding analysis. Chem. Commun. 47, 6242–6244 (2011).

    CAS  Google Scholar 

  77. Boustani, I., Quandt, A., Hernández, E. & Rubio, A. New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3185 (1999).

    CAS  Google Scholar 

  78. Evans, M. H., Joannopoulos, J. D. & Pantelides, S. T. Electronic and mechanical properties of planar and tubular boron structures. Phys. Rev. B 72, 045434 (2005).

    Google Scholar 

  79. Kunstmann, J. & Quandt, A. Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 74, 035413 (2006).

    Google Scholar 

  80. Lau, K. C. & Pandey, R. Stability and electronic properties of atomistically-engineered 2D boron sheets. J. Phys. Chem. C 111, 2906–2912 (2007).

    CAS  Google Scholar 

  81. Penev, E. S., Bhowmick, S., Sadrzadeh, A. & Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012).

    CAS  PubMed  Google Scholar 

  82. Wu, X. et al. Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012).

    CAS  PubMed  Google Scholar 

  83. Liu, Y., Penev, E. S. & Yakobson, B. I. Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. Int. Ed. 52, 3156–3159 (2013).

    CAS  Google Scholar 

  84. Liu, H., Gao, J. & Zhao, J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. Zhang, Z., Yang, Y., Gao, G. & Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 54, 13022–13026 (2015).

    CAS  Google Scholar 

  86. Xu, S., Zhao, Y., Liao, J., Yang, X. & Xu, H. The nucleation and growth of borophene on the Ag(111) surface. Nano Res. 9, 2616–2622 (2016).

    CAS  Google Scholar 

  87. Zhang, Z. et al. Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16, 6622–6627 (2016).

    CAS  PubMed  Google Scholar 

  88. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017).

    CAS  Google Scholar 

  89. Shu, H., Li, F., Liang, P. & Chen, X. Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an Ag(111) surface. Nanoscale 8, 16284–16291 (2016).

    CAS  PubMed  Google Scholar 

  90. Zabolotskiy, A. D. & Lozovik, Y. E. Strain-induced pseudomagnetic field in the Dirac semimetal borophene. Phys. Rev. B 94, 165403 (2016).

    Google Scholar 

  91. Sun, H. Li, Q. & Wan, X. G. First-principles study of thermal properties of borophene. Phys. Chem. Chem. Phys. 18, 14927–14932 (2016).

    CAS  PubMed  Google Scholar 

  92. Zhang, Z., Yang, Y., Penev, E. S. & Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 27, 1605059 (2017).

    Google Scholar 

  93. Zhao, Y. Zeng, S. & Ni, J. Phonon-mediated superconductivity in borophenes. Appl. Phys. Lett. 108, 242601 (2016).

    Google Scholar 

  94. Penev, E. S., Kutana, A. & Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016).

    CAS  PubMed  Google Scholar 

  95. Xiao, R. C. et al. Enhanced superconductivity by strain and carrier-doping in borophene: a first principles prediction. Appl. Phys. Lett. 109, 122604 (2016).

    Google Scholar 

  96. Gao, M., Li, Q. Z., Yan, X. W. & Wang, J. Prediction of phonon-mediated superconductivity in borophene. Phys. Rev. B 95, 024505 (2017).

    Google Scholar 

  97. Galeev, T. R., Romanescu, C., Li, W. L., Wang, L. S. & Boldyrev, A. I. Valence isoelectronic substitution in the B8 and B9 molecular wheels by an Al dopant atom: umbrella-like structures of AlB7 and AlB8. J. Chem. Phys. 135, 104301 (2011).

    PubMed  Google Scholar 

  98. Li, W. L., Romanescu, C., Piazza, Z. A. & Wang, L. S. Geometrical requirements for transition-metal-centered aromatic boron wheels: the case of VB10. Phys. Chem. Chem. Phys. 14, 13663–13669 (2012).

    CAS  PubMed  Google Scholar 

  99. Li, W. L. et al. On the way to the highest coordination number in the planar metal-centred aromatic Ta©B10 cluster: evolution of the structures of TaBn (n = 3 – 8). J. Chem. Phys. 139, 104312 (2013).

    PubMed  Google Scholar 

  100. Popov, I. A., Li, W. L., Piazza, Z. A., Boldyrev, A. I. & Wang, L. S. Complexes between planar boron clusters and transition metals: a photoelectron spectroscopy and ab initio study of CoB12 and RhB12−. J. Phys. Chem. A 118, 8098–8105 (2014).

    CAS  PubMed  Google Scholar 

  101. Li, W. L. et al. Hexagonal bipyramidal Ta2B6−/0 clusters: B6 rings as structural motifs. Angew. Chem. Int. Ed. 53, 1288–1292 (2014).

    CAS  Google Scholar 

  102. Robinson, P. J., Zhang, X., McQueen, T., Bowen, K. H. & Alexandrova, A. N. SmB6 cluster anion: covalency involving f orbitals. J. Phys. Chem. A 121, 1849–1854 (2017).

    CAS  PubMed  Google Scholar 

  103. Chen, T. T. et al. PrB7: A praseodymium-doped boron cluster with a Pr(ii) center coordinated by a doubly aromatic planar η7-B73− ligand. Angew. Chem. Int. Ed. 56, 6916–6920 (2017).

    CAS  Google Scholar 

  104. Romanescu, C., Galeev, T. R., Li, W. L., Boldyrev, A. I. & Wang, L. S. Geometric and electronic factors in the rational design of transition-metal-centered boron molecular wheels. J. Chem. Phys. 138, 134315 (2013).

    PubMed  Google Scholar 

  105. Xu, C., Cheng, L. J. & Yang, J. L. Double aromaticity in transition metal centered double-ring boron clusters M@B2n (M = Ti, Cr, Fe, Ni, Zn; n = 6, 7, 8). J. Chem. Phys. 141, 124301 (2014).

    PubMed  Google Scholar 

  106. Tam, N. M., Pham, H. T., Duong, L. V., Pham-Ho, M. P. & Nguyen, M. T. Fullerene-like boron clusters stabilized by an endohedrally doped iron atom: BnFe with n = 14, 16, 18 and 20. Phys. Chem. Chem. Phys. 17, 3000–3003 (2015).

    CAS  PubMed  Google Scholar 

  107. Zhao, Y., Xin, C. & Li, J. TGMin: a global-minimum structure search program based on a constrained basin-hopping algorithm. Nano Res. 10, 3407–3420 (2017).

    CAS  Google Scholar 

  108. Chen, X., Zhao, Y. F., Wang, L. S. & Li, J. Recent progresses of global minimum searches of nanoclusters with a constraint basin-hopping algorithm in the TGMin program. Comput. Theor. Chem. 1107, 57–65 (2017).

    CAS  Google Scholar 

  109. Carenco, S., Portehault, D., Boissiere, C., Mezailles, N. & Sanchez, C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 113, 7981–8065 (2013).

    CAS  PubMed  Google Scholar 

  110. Rastgou, A., Soleymanabadi, H. & Bodaghi, A. DNA sequencing by borophene nanosheet via an electronic response: a theoretical study. Microelectron. Eng. 169, 9–15 (2017).

    CAS  Google Scholar 

  111. Garcia-Fuente, A., Carrete, J., Vega, A. & Gallego, L. J. What will freestanding borophene nanoribbons look like? An analysis of their possible structures, magnetism and transport properties. Phys. Chem. Chem. Phys. 19, 1054–1061 (2017).

    CAS  PubMed  Google Scholar 

  112. Feng, B. et al. Dirac fermions in borophene. Phys. Rev. Lett. 118, 096401 (2017).

    PubMed  Google Scholar 

  113. Liu, X. et al. Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci. Adv. 3, e1602356 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The experimental work on size-selected boron clusters at Brown University was supported by the US National Science Foundation (Grant No. CHE-1263745). The theoretical work done at Tsinghua University was supported by the National Key Basic Research Special Funds (Grant No. 2013CB834603) and the National Natural Science Foundation of China (Grant Nos 21433005, 91426302 and 21590792) of China. The calculations were performed using supercomputers at the Computer Network Information Center, Chinese Academy of Sciences, Tsinghua National Laboratory for Information Science and Technology, and Guangzhou Tianhe-2 Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Li or Lai-Sheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WL., Chen, X., Jian, T. et al. From planar boron clusters to borophenes and metalloborophenes. Nat Rev Chem 1, 0071 (2017). https://doi.org/10.1038/s41570-017-0071

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing