Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunological anatomy of the skin

Abstract

The skin is the outermost organ of the body and is continuously exposed to external pathogens. Upon inflammation, various immune cells pass through, reside in or are recruited to the skin to orchestrate diverse cutaneous immune responses. To achieve this, immune cells interact with each other and even communicate with non-immune cells, including peripheral nerves and the microbiota. Immunologically important anatomical sites, such as skin appendages (for example, hair follicles and sweat glands) or postcapillary venules, act as special portal sites for immune cells and for establishing tertiary lymphoid structures, including inducible skin-associated lymphoid tissue. Here, we provide an overview of the key findings and concepts of cutaneous immunity in association with skin anatomy and discuss how cutaneous immune cells fine-tune physiological responses in the skin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical and immunological barrier of the skin.
Fig. 2: A specific contribution of postcapillary venules in cutaneous immunity.
Fig. 3: Neuro-immune interactions and perivascular adipose tissue in the skin.
Fig. 4: Penetration of hapten and proteins into the skin.
Fig. 5: A schematic view of the sensitization and elicitation phases of contact hypersensitivity.
Fig. 6: Newly identified key locations and structures in skin immunity.

Similar content being viewed by others

References

  1. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7, 265–273 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    CAS  PubMed  Google Scholar 

  4. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Matsui, T. & Amagai, M. Dissecting the formation, structure and barrier function of the stratum corneum. Int. Immunol. 27, 269–280 (2015).

    CAS  PubMed  Google Scholar 

  9. Egawa, G. & Kabashima, K. Multifactorial skin barrier deficiency and atopic dermatitis: essential topics to prevent the atopic march. J. Allergy Clin. Immunol. 138, 350–358.e351 (2016).

    PubMed  Google Scholar 

  10. Belkaid, Y. & Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 16, 353–366 (2016).

    CAS  PubMed  Google Scholar 

  11. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    CAS  PubMed  Google Scholar 

  12. Tong, P. L. et al. The skin immune atlas: three-dimensional analysis of cutaneous leukocyte subsets by multiphoton microscopy. J. Invest. Dermatol. 135, 84–93 (2015).

    PubMed  Google Scholar 

  13. Lämmermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).

    PubMed  Google Scholar 

  14. Jain, R., Tikoo, S., Egawa, G. & Weninger, W. in Encyclopedia of Immunobiology Vol. 3 (ed. Ratcliffe, M.) 493–504 (Elsevier, 2016).

  15. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    CAS  PubMed  Google Scholar 

  16. Wolf, K., Müller, R., Borgmann, S., Bröcker, E.-B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003).

    CAS  PubMed  Google Scholar 

  17. Tomura, M. et al. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J. Clin. Invest. 120, 883–893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Natsuaki, Y. et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15, 1064–1069 (2014). This study shows that perivascular leukocyte clusters including macrophages and DCs are essential structures for effector T cell activation in the skin and proposes the concept of iSALT.

    CAS  PubMed  Google Scholar 

  21. Carmi-Levy, I., Homey, B. & Soumelis, V. A modular view of cytokine networks in atopic dermatitis. Clin. Rev. Allergy Immunol. 41, 245–253 (2011).

    CAS  PubMed  Google Scholar 

  22. Nestle, F. O., Di Meglio, P., Qin, J.-Z. & Nickoloff, B. J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagao, K. et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13, 744–752 (2012). This is the first study to show the importance of hair follicles for immune cell trafficking from dermis to the epidermis.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wollenberg, A., Kraft, S., Hanau, D. & Bieber, T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J. Invest. Dermatol. 106, 446–453 (1996).

    CAS  PubMed  Google Scholar 

  25. Liu, Z. et al. Visualization of T cell-regulated monocyte clusters mediating keratinocyte death in acquired cutaneous immunity. J. Invest. Dermatol. 138, 1328–1337 (2018). This study demonstrates that monocytes cluster around hair follicles after hapten painting to the skin.

    CAS  PubMed  Google Scholar 

  26. Paus, R. et al. The hair follicle and immune privilege. J. Investig. Dermatol. Symp. Proc. 8, 188–194 (2003).

    PubMed  Google Scholar 

  27. Kang, H. et al. Hair follicles from alopecia areata patients exhibit alterations in immune privilege-associated gene expression in advance of hair loss. J. Invest. Dermatol. 130, 2677–2680 (2010).

    CAS  PubMed  Google Scholar 

  28. Adachi, T. et al. Hair follicle–derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat. Med. 21, 1272–1279 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Collins, N. et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7, 11514 (2016). This study shows that leukocyte clusters around hair follicles may serve as the structures for memory T cell activation after hapten application or HSV infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129.e1111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mattii, M. et al. Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells. Br. J. Dermatol. 178, 722–730 (2018).

    CAS  PubMed  Google Scholar 

  32. Nakahigashi, K. et al. PGD2 induces eotaxin-3 via PPARγ from sebocytes: a possible pathogenesis of eosinophilic pustular folliculitis. J. Allergy Clin. Immunol. 129, 536–543 (2012).

    CAS  PubMed  Google Scholar 

  33. Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Linehan, J. L. et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172, 784–796 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Egawa, N., Egawa, K., Griffin, H. & Doorbar, J. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses 7, 3863–3890 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Egawa, G. et al. Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci. Rep. 3, 1932 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Abtin, A. et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15, 45–53 (2014).

    CAS  PubMed  Google Scholar 

  39. Szallasi, A., Cortright, D. N., Blum, C. A. & Eid, S. R. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov. 6, 357–372 (2007).

    CAS  PubMed  Google Scholar 

  40. van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).

    PubMed  Google Scholar 

  41. Feng, J. et al. Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nat. Commun. 8, 980 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Nakamizo, S. & Egawa, G. in Immunology of the Skin (ed. Kabashima, K.) 227–238 (Springer, 2016).

  43. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L.-J. et al. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347, 67–71 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Egawa, G., Miyachi, Y. & Kabashima, K. Identification of perivascular adipose tissue in the mouse skin using two-photon microscopy. J. Dermatol. Sci. 70, 139–140 (2013).

    PubMed  Google Scholar 

  46. Gao, Y. J., Lu, C., Su, L. Y., Sharma, A. & Lee, R. Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br. J. Pharmacol. 151, 323–331 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajsheker, S. et al. Crosstalk between perivascular adipose tissue and blood vessels. Curr. Opin. Pharmacol. 10, 191–196 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kubo, A., Nagao, K., Yokouchi, M., Sasaki, H. & Amagai, M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206, 2937–2946 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dress, R. J., Wong, A. Y. & Ginhoux, F. Homeostatic control of dendritic cell numbers and differentiation. Immunol. Cell Biol. 96, 463–476 (2018).

    PubMed  Google Scholar 

  50. Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schlitzer, A., McGovern, N. & Ginhoux, F. Dendritic cells and monocyte derived cells: two complementary and integrated functional systems. Semin. Cell Dev. Biol. 41, 9–22 (2017).

    Google Scholar 

  52. Honda, T. et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40, 235–247 (2014). This study shows a regulatory mechanism of effector T cell motility and its activation status in the skin.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Krummel, M. F., Bartumeus, F. & Gerard, A. T cell migration, search strategies and mechanisms. Nat. Rev. Immunol. 16, 193–201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Egawa, G. et al. In vivo imaging of T cell motility in the elicitation phase of contact hypersensitivity using two-photon microscopy. J. Invest. Dermatol. 131, 977–979 (2011).

    CAS  PubMed  Google Scholar 

  55. Matheu, M. P. et al. Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 29, 602–614 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dudeck, J. et al. Mast cells acquire MHCII from dendritic cells during skin inflammation. J. Exp. Med. 214, 3791–3811 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Miyake, K. et al. Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc. Natl Acad. Sci. USA 114, 1111–1116 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bennett, C. L. et al. Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin. Blood 117, 7063–7069 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, J. H. et al. CD1a on Langerhans cells controls inflammatory skin disease. Nat. Immunol. 17, 1159–1166 (2016). This study shows that LCs play crucial roles in the induction of allergic reactions to urushiol as well as in psoriasis via their expression of CD1a.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ono, S., Honda, T. & Kabashima, K. Requirement of MHC class I on radioresistant cells for granzyme B expression from CD8+ T cells in murine contact hypersensitivity. J. Dermatol. Sci. 90, 98–101 (2018).

    CAS  PubMed  Google Scholar 

  61. Kish, D. D., Volokh, N., Baldwin, W. M. 3rd & Fairchild, R. L. Hapten application to the skin induces an inflammatory program directing hapten-primed effector CD8 T cell interaction with hapten-presenting endothelial cells. J. Immunol. 186, 2117–2126 (2011).

    CAS  PubMed  Google Scholar 

  62. Gaspari, A. A. & Katz, S. I. Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes. J. Immunol. 140, 2956–2963 (1988).

    CAS  PubMed  Google Scholar 

  63. Kim, B. S. et al. Keratinocytes function as accessory cells for presentation of endogenous antigen expressed in the epidermis. J. Invest. Dermatol. 129, 2805–2817 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Krummel, M. F., Heath, W. R. & Allison, J. Differential coupling of second signals for cytotoxicity and proliferation in CD8+ T cell effectors: amplification of the lytic potential by B7. J. Immunol. 163, 2999–3006 (1999).

    CAS  PubMed  Google Scholar 

  65. Streilein, J. W. Skin-associated lymphoid tissues (SALT): origins and functions. J. Invest. Dermatol. 80 (Suppl.), 12–16 (1983).

    Google Scholar 

  66. Streilein, J. W. Circuits and signals of the skin-associated lymphoid tissues (SALT). J. Invest. Dermatol. 85, S10–S13 (1985).

    Google Scholar 

  67. Sontheimer, R. Perivascular dendritic macrophages as immunobiological constituents of the human dermal microvascular unit. J. Invest. Dermatol. 93, S96–S101 (1989).

    Google Scholar 

  68. Honda, T. & Kabashima, K. Novel concept of iSALT (inducible skin-associated lymphoid tissue) in the elicitation of allergic contact dermatitis. Proc. Jpn. Acad. 92, 20–28 (2016).

    CAS  Google Scholar 

  69. Kogame, T. et al. Possible inducible skin-associated lymphoid tissue (iSALT)-like structures with CXCL13+ fibroblast-like cells in secondary syphilis. Br. J. Dermatol. 177, 1737–1739 (2017).

    CAS  PubMed  Google Scholar 

  70. Sawada, Y. et al. Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses. J. Exp. Med. 212, 1921–1930 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kashem, S. W., Haniffa, M. & Kaplan, D. H. Antigen-presenting cells in the skin. Annu. Rev. Immunol. 35, 469–499 (2017).

    CAS  PubMed  Google Scholar 

  72. Okada, T., Takahashi, S., Ishida, A. & Ishigame, H. In vivo multiphoton imaging of immune cell dynamics. Pflugers Arch. 468, 1793–1801 (2016). This study shows the in vivo dynamics of skin DC subsets in iSALT by multiphoton microscopy.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Honda, T. et al. Compensatory role of Langerhans cells and langerin-positive dermal dendritic cells in the sensitization phase of murine contact hypersensitivity. J. Allergy Clin. Immunol. 125, 1154–1156.e1152 (2010).

    PubMed  Google Scholar 

  74. Zaba, L. C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    CAS  PubMed  Google Scholar 

  76. Randall, T. D. Bronchus-associated lymphoid tissue (BALT) structure and function. Adv. Immunol. 107, 187–241 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dieu-Nosjean, M. C., Goc, J., Giraldo, N. A., Sautes-Fridman, C. & Fridman, W. H. Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 35, 571–580 (2014).

    CAS  PubMed  Google Scholar 

  78. Colbeck, E. J., Ager, A., Gallimore, A. & Jones, G. W. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front. Immunol. 8, 1830 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Neyt, K., Perros, F., GeurtsvanKessel, C. H., Hammad, H. & Lambrecht, B. N. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 33, 297–305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Iijima, N. & Iwasaki, A. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014). This study shows that leukocyte clusters in genital mucosa after HSV infection are essential structures where activation of memory T cells is induced for the elimination of HSV.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lowe, P. M. et al. The endothelium in psoriasis. Br. J. Dermatol. 132, 497–505 (1995).

    CAS  PubMed  Google Scholar 

  82. Mitsui, H. et al. Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J. Invest. Dermatol. 132, 1615–1626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, T. G. et al. Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis. J. Invest. Dermatol. 134, 1462–1465 (2014).

    CAS  PubMed  Google Scholar 

  84. Martinet, L. et al. High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. Oncoimmunology 1, 829–839 (2012).

    PubMed  PubMed Central  Google Scholar 

  85. Ladanyi, A. et al. Density of DC-LAMP+ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol. Immunother. 56, 1459–1469 (2007).

    PubMed  Google Scholar 

  86. Arps, D. P. & Patel, R. M. Lupus profundus (panniculitis): a potential mimic of subcutaneous panniculitis-like T cell lymphoma. Arch. Pathol. Lab. Med. 137, 1211–1215 (2013).

    PubMed  Google Scholar 

  87. Kung, I. T., Gibson, J. B. & Bannatyne, P. M. Kimura’s disease: a clinico-pathological study of 21 cases and its distinction from angiolymphoid hyperplasia with eosinophilia. Pathology 16, 39–44 (1984).

    CAS  PubMed  Google Scholar 

  88. Murata, T. et al. Transient elevation of cytoplasmic calcium ion concentration at a single cell level precedes morphological changes of epidermal keratinocytes during cornification. Sci. Rep. 8, 6610 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Honda, T., Egawa, G., Grabbe, S. & Kabashima, K. Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J. Invest. Dermatol. 133, 303–315 (2013).

    CAS  PubMed  Google Scholar 

  90. Kaplan, D. H., Igyártó, B. Z. & Gaspari, A. A. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol. 12, 114–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Boissonnas, A. et al. CD8+ tumor-infiltrating T cells are trapped in the tumor-dendritic cell network. Neoplasia 15, 85–94 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Engelhardt, J. J. et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21, 402–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014). This study identifies the cutaneous DC subset responsible for antigen presentation in the skin in melanoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gardner, A. & Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 37, 855–865 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Noordegraaf, M., Flacher, V., Stoitzner, P. & Clausen, B. E. Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity. J. Invest. Dermatol. 130, 2752–2759 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wohn, C. et al. Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl Acad. Sci. USA 110, 10723–10728 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Leinweber, B., Kerl, H. & Cerroni, L. Histopathologic features of cutaneous herpes virus infections (herpes simplex, herpes varicella/zoster): a broad spectrum of presentations with common pseudolymphomatous aspects. Am. J. Surg. Pathol. 30, 50–58 (2006).

    PubMed  Google Scholar 

  100. Zhu, J. et al. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat. Med. 15, 886–892 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kiviat, N. B. et al. Endometrial histopathology in patients with culture-proved upper genital tract infection and laparoscopically diagnosed acute salpingitis. Am. J. Surg. Pathol. 14, 167–175 (1990).

    CAS  PubMed  Google Scholar 

  102. Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F. L. Plasmacytoid dendritic cells (natural interferon- α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Japan Society for the Promotion of Science KAKENHI (JP15K09766, JP15H05096 (to T.H.) and 263395 (to K.K)), Grants-in-Aid for Scientific Research (15H05790, 15H1155 and 15K15417 to K.K.) and the Japan Agency for Medical Research and Development (AMED) (16ek0410011h0003 and 16he0902003h0002 to K.K.). The authors thank A. Hayday of the King’s College London School of Medicine, London, UK, and E. Epstein Jr of PellePharm for the critical reading of the manuscript.

Reviewer information

Nature Reviews Immunology thanks B. Malissen and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of the content of the article. G.E. and T.H. also contributed to researching data and the writing of the article. K.K. and F.G. also contributed to the review and editing of the manuscript.

Corresponding authors

Correspondence to Kenji Kabashima or Gyohei Egawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Langerin-DTR mice

Mice that express diphtheria toxin receptor (DTR) under the control of the Langerin gene promoter. Treatment of these mice with diphtheria toxin leads to the deletion of all Langerin-expressing cells.

Alopecia areata

A patchy hair loss mainly occurring in the scalp. It is believed to be one of the autoimmune diseases.

Eosinophilic pustular folliculitis

A recurrent folliculitis that is often formed in the face. In this condition, many eosinophils are pathologically accumulated around hair follicles.

Transient receptor potential subfamily V member 1

(TRPV1). Also known as capsaicin receptor; TRPV1 is a cation channel member selectively expressed on peripheral sensory neurons that serves as a molecular sensor (nociceptor) for noxious stimuli.

Trogocytosis

Lymphocytes that conjugate to antigen-presenting cells sometimes ‘rob’ the surface molecules and express them on their own surfaces. ‘Trogo’ means ‘gnaw’ in Greek.

Kimura disease

A chronic inflammatory disorder characterized by a painless lymphadenopathy or masses on head and neck regions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabashima, K., Honda, T., Ginhoux, F. et al. The immunological anatomy of the skin. Nat Rev Immunol 19, 19–30 (2019). https://doi.org/10.1038/s41577-018-0084-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0084-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing