Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation, functionalization and characterization of engineered carbon nanodots

Abstract

Carbon-based dots (CDs) and their functionalized (nano)composites have recently attracted attention due to their seemingly easy preparation and numerous potential applications, ranging from those in the biomedical field (i.e., imaging and drug delivery) to those in (opto)electronics (i.e., solar cells and LEDs). This protocol details step-by-step procedures for synthesis, purification, functionalization and characterization of nitrogen-doped carbon nanodots (NCNDs), which we have been preparing for the past few years. First, we describe the bottom-up synthesis of NCNDs, starting with the use of molecular precursors (arginine (Arg) and ethylenediamine (EDA)) and making use of microwave-assisted hydrothermal heating. We also provide guidelines for the purification of these materials, through either dialysis or low-pressure size-exclusion chromatography (SEC). Second, we outline post-functionalization procedures for the surface modification of NCNDs, such as alkylation and amidation reactions. Third, we provide instructions for the preparation of NCNDs with different properties, such as color emission, electrochemistry and chirality. Given the fast evolution of preparations and applications of CDs, issues that might arise from artifacts, errors and impurities should be avoided. In this context, the present protocol aims to provide details and guidelines for the synthesis of high-quality nanomaterials with high reproducibility, for various applications. Furthermore, specific needs might require the CDs to be prepared by different synthetic procedures and/or from different molecular precursors, but such CDs can still benefit from the purification and characterization procedures outlined in this protocol. The sample preparation takes various time frames, ranging from 4 to 18 d, depending on the adopted synthesis and purification steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time-course illustration of key steps in the preparation of NCNDs.
Fig. 2: Characterization of NCNDs (Step 11).
Fig. 3: Characterization of NCND derivatives (Box 1).

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the article and its Supplementary Information files. Additional data are available from the corresponding authors upon request.

References

  1. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  PubMed  Google Scholar 

  2. Gates, B. D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    CAS  PubMed  Google Scholar 

  3. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    CAS  PubMed  Google Scholar 

  4. Thompson, M. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    PubMed  Google Scholar 

  5. Krueger, A. Carbon Materials and Nanotechnology (John Wiley & Sons, 2010).

  6. Albanese, A., Tang, P. S. & Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

    CAS  PubMed  Google Scholar 

  7. Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baker, S. N. & Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010).

    CAS  Google Scholar 

  9. Georgakilas, V., Perman, J. A., Tucek, J. & Zboril, R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, Nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015).

    CAS  PubMed  Google Scholar 

  10. Zheng, X. T., Ananthanarayanan, A., Luo, K. Q. & Chen, P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015).

    CAS  PubMed  Google Scholar 

  11. Hutton, G. A. M., Martindale, B. C. M. & Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 46, 6111–6123 (2017).

    CAS  PubMed  Google Scholar 

  12. Choi, Y., Choi, Y., Kwon, O.-H. & Kim, B.-S. Carbon dots: bottom-up syntheses, Properties, and light-harvesting applications. Chem. Asian J. 13, 586–598 (2018).

    CAS  PubMed  Google Scholar 

  13. Strauss, V., Roth, A., Sekita, M. & Guldi, D. M. Efficient energy-conversion materials for the future: understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016).

    CAS  Google Scholar 

  14. Antonietti, M. & Oschatz, M. The concept of “noble, heteroatom-doped carbons,” their directed synthesis by electronic band control of carbonization, and applications in catalysis and energy materials. Adv. Mater. 30, 1706836 (2018).

    Google Scholar 

  15. Bhattacharyya, S. et al. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 8, 1401 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Li, F., Yang, D. & Xu, H. Non-metal-heteroatom-doped carbon dots: synthesis and properties. Chem. Eur. J. 25, 1165–1176 (2019).

    CAS  PubMed  Google Scholar 

  17. Kim, D. et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat. Nanotechnol. 13, 812–818 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Green, D. C. et al. Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nat. Commun. 10, 206 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. Li, Q. et al. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 9, 734 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Xiong, Y., Schneider, J., Ushakova, E. V. & Rogach, A. L. Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today 23, 124–139 (2018).

    CAS  Google Scholar 

  21. Cailotto, S. et al. Design of carbon dots for metal-free photoredox catalysis. ACS Appl. Mater. Interfaces 10, 40560–40567 (2018).

    CAS  PubMed  Google Scholar 

  22. Yan, Y. et al. Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS Nano 12, 3523–3532 (2018).

    CAS  PubMed  Google Scholar 

  23. Yuan, F. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Lim, S. Y., Shen, W. & Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015).

    CAS  PubMed  Google Scholar 

  25. Zhang, J. & Yu, S.-H. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 19, 382–393 (2016).

    CAS  Google Scholar 

  26. Pham, S. N. et al. Carbon dots: a modular activity to teach fluorescence and nanotechnology at multiple levels. J. Chem. Educ. 94, 1143–1149 (2017).

    CAS  Google Scholar 

  27. Schneider, E. M., Bärtsch, A., Stark, W. J. & Grass, R. N. Safe one-pot synthesis of fluorescent carbon quantum dots from lemon juice for a hands-on experience of nanotechnology. J. Chem. Educ. 96, 540–545 (2019).

    CAS  Google Scholar 

  28. Cayuela, A., Soriano, M. L., Carrillo-Carrión, C. & Valcárcel, M. Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem. Commun. 52, 1311–1326 (2016).

    CAS  Google Scholar 

  29. Essner, J. B., Kist, J. A., Polo-Parada, L. & Baker, G. A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 30, 1878–1887 (2018).

    CAS  Google Scholar 

  30. Arcudi, F., Đorđević, L. & Prato, M. Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angew. Chem. Int. Ed. 55, 2107–2112 (2016).

    CAS  Google Scholar 

  31. Arcudi, F., Đorđević, L. & Prato, M. Design, synthesis, and functionalization strategies of tailored carbon nanodots. Acc. Chem. Res. 52, 2070–2079 (2019).

    CAS  PubMed  Google Scholar 

  32. Ðorđević, L. et al. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun. 9, 3442 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Arcudi, F., Đorđević, L. & Prato, M. Rationally designed carbon nanodots towards pure white-light emission. Angew. Chem. Int. Ed. 56, 4170–4173 (2017).

    CAS  Google Scholar 

  34. Rigodanza, F., Đorđević, L., Arcudi, F. & Prato, M. Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-up synthesis. Angew. Chem. Int. Ed. 57, 5062–5067 (2018).

    CAS  Google Scholar 

  35. Carrara, S., Arcudi, F., Prato, M. & De Cola, L. Amine-rich nitrogen-doped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew. Chem. Int. Ed. 56, 4757–4761 (2017).

    CAS  Google Scholar 

  36. Arcudi, F. et al. Porphyrin antennas on carbon nanodots: excited state energy and electron transduction. Angew. Chem. Int. Ed. 56, 12097–12101 (2017).

    CAS  Google Scholar 

  37. Cadranel, A. et al. Screening supramolecular interactions between carbon nanodots and porphyrins. J. Am. Chem. Soc. 140, 904–907 (2018).

    CAS  PubMed  Google Scholar 

  38. Dimos, K. et al. Top-down and bottom-up approaches to transparent, flexible and luminescent nitrogen-doped carbon nanodot-clay hybrid films. Nanoscale 9, 10256–10262 (2017).

    CAS  PubMed  Google Scholar 

  39. Rizzo, C. et al. Nitrogen-doped carbon nanodots-ionogels: preparation, characterization, and radical scavenging activity. ACS Nano 12, 1296–1305 (2018).

    CAS  PubMed  Google Scholar 

  40. Gomez, I. J., Arnaiz, B., Cacioppo, M., Arcudi, F. & Prato, M. Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. J. Mater. Chem. B 6, 5540–5548 (2018).

    CAS  Google Scholar 

  41. Sciortino, A. et al. β-C3N4 nanocrystals: carbon dots with extraordinary morphological, structural, and optical homogeneity. Chem. Mater. 30, 1695–1700 (2018).

    CAS  Google Scholar 

  42. Xu, X. et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004).

    CAS  PubMed  Google Scholar 

  43. Sun, Y.-P. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

    CAS  PubMed  Google Scholar 

  44. Zhou, J. et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744–745 (2007).

    CAS  PubMed  Google Scholar 

  45. Ye, R. et al. Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013).

    PubMed  Google Scholar 

  46. Ming, H. et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalt. Trans. 41, 9526–9531 (2012).

    CAS  Google Scholar 

  47. Jiang, J., He, Y., Li, S. & Cui, H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun. 48, 9634 (2012).

    CAS  Google Scholar 

  48. Zhu, S., Zhao, X., Song, Y., Lu, S. & Yang, B. Beyond bottom-up carbon nanodots: citric-acid derived organic molecules. Nano Today 11, 128–132 (2016).

    CAS  Google Scholar 

  49. Schneider, J. et al. Molecular fluorescence in citric acid-based carbon dots. J. Phys. Chem. C. 121, 2014–2022 (2017).

    CAS  Google Scholar 

  50. Hill, S. & Galan, M. C. Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein J. Org. Chem. 13, 675–693 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Titirici, M. M. & Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 39, 103–116 (2010).

    CAS  PubMed  Google Scholar 

  52. Schwenke, A. M., Hoeppener, S. & Schubert, U. S. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv. Mater. 27, 4113–4141 (2015).

    CAS  PubMed  Google Scholar 

  53. Krysmann, M. J., Kelarakis, A., Dallas, P. & Giannelis, E. P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747–750 (2012).

    CAS  PubMed  Google Scholar 

  54. Jiang, K. et al. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54, 5360–5363 (2015).

    CAS  Google Scholar 

  55. Yuan, F. et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 29, 1604436 (2017).

    Google Scholar 

  56. Ding, H. et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14, 1800612 (2018).

    Google Scholar 

  57. Miao, X. et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 30, 1704740 (2018).

    Google Scholar 

  58. Li, L. & Dong, T. Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J. Mater. Chem. C. 6, 7944–7970 (2018).

    CAS  Google Scholar 

  59. Deng, J. et al. Electrochemical synthesis of carbon nanodots directly from alcohols. Chem. Eur. J. 20, 4993–4999 (2014).

    CAS  PubMed  Google Scholar 

  60. Yao, B., Huang, H., Liu, Y. & Kang, Z. Carbon dots: a small conundrum. Trends Chem. 1, 235–246 (2019).

    Google Scholar 

  61. Ţucureanu, V., Matei, A. & Avram, A. M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 46, 502–520 (2016).

    PubMed  Google Scholar 

  62. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    CAS  PubMed  Google Scholar 

  63. Koutsioukis, A., Akouros, A., Zboril, R. & Georgakilas, V. Solid phase extraction for the purification of violet, blue, green and yellow emitting carbon dots. Nanoscale 10, 11293–11296 (2018).

    CAS  PubMed  Google Scholar 

  64. Zhou, Y. et al. Photoluminescent carbon dots: a mixture of heterogeneous fractions. ChemPhysChem 19, 2589–2597 (2018).

    CAS  PubMed  Google Scholar 

  65. Fu, M. et al. Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 15, 6030–6035 (2015).

    CAS  PubMed  Google Scholar 

  66. Righetto, M. et al. Spectroscopic insights into carbon dot systems. J. Phys. Chem. Lett. 8, 2236–2242 (2017).

    CAS  PubMed  Google Scholar 

  67. Zhao, P. & Zhu, L. Dispersibility of carbon dots in aqueous and/or organic solvents. Chem. Commun. 54, 5401–5406 (2018).

    CAS  Google Scholar 

  68. Juzenas, P. et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60, 1600–1614 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hola, K. et al. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9, 590–603 (2014).

    CAS  Google Scholar 

  70. Luo, P. G. et al. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 4, 10791–10807 (2014).

    CAS  Google Scholar 

  71. LeCroy, G. E. et al. Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord. Chem. Rev. 320–321, 66–81 (2016).

    Google Scholar 

  72. Yuan, F. et al. Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today 11, 565–586 (2016).

    CAS  Google Scholar 

  73. Sharma, V., Tiwari, P. & Mobin, S. M. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 5, 8904–8924 (2017).

    CAS  Google Scholar 

  74. Pardo, J., Peng, Z. & Leblanc, R. M. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 23, 378 (2018).

    PubMed Central  Google Scholar 

  75. Du, J., Xu, N., Fan, J., Sun, W. & Peng, X. Carbon dots for in vivo bioimaging and theranostics. Small 15, 1805087 (2019).

    Google Scholar 

  76. Molaei, M. J. Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv. 9, 6460–6481 (2019).

    CAS  Google Scholar 

  77. Tian, Z. et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mater. 5, 1700416 (2017).

    Google Scholar 

  78. Fernando, K. A. S. et al. Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7, 8363–8376 (2015).

    CAS  PubMed  Google Scholar 

  79. Yu, H. et al. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454–9477 (2016).

    CAS  PubMed  Google Scholar 

  80. Wang, R., Lu, K. Q., Tang, Z. R. & Xu, Y. J. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5, 3717–3734 (2017).

    CAS  Google Scholar 

  81. Essner, J. B. & Baker, G. A. The emerging roles of carbon dots in solar photovoltaics: a critical review. Environ. Sci. Nano 4, 1216–1263 (2017).

    CAS  Google Scholar 

  82. Hu, C., Li, M., Qiu, J. & Sun, Y.-P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 48,, 2315–2337 (2019).

    Google Scholar 

  83. Tang, L. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102–5110 (2012).

    CAS  PubMed  Google Scholar 

  84. Tang, L. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 8, 6312–6320 (2014).

    CAS  PubMed  Google Scholar 

  85. Würth, C., Grabolle, M., Pauli, J., Spieles, M. & Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 8, 1535–50 (2013).

    PubMed  Google Scholar 

  86. Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598 (1970).

    CAS  PubMed  Google Scholar 

  87. Gaskell, K. & Ramsdell, D. AFM standard operating procedure. http://www.chem.umd.edu/wp-content/uploads/2013/05/AFM-SOP-ver2.pdf (2013).

  88. Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).

    CAS  Google Scholar 

  89. Graham, D. J. Standard operating procedures for cyclic voltammetry. https://sop4cv.com/index.html.

  90. Cardona, C. M., Li, W., Kaifer, A. E., Stockdale, D. & Bazan, G. C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23, 2367–2371 (2011).

    CAS  PubMed  Google Scholar 

  91. Hwang, Y.-J., Courtright, B. A. E., Ferreira, A. S., Tolbert, S. H. & Jenekhe, S. A. 7.7% Efficient all-polymer solar cells. Adv. Mater. 27, 4578–4584 (2015).

    CAS  PubMed  Google Scholar 

  92. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2007).

    Google Scholar 

  93. Garbett, N. C., Ragazzon, P. A. & Chaires, J. B. Circular dichroism to determine binding mode and affinity of ligand-DNA interactions. Nat. Protoc. 2, 3166–3172 (2007).

    CAS  PubMed  Google Scholar 

  94. Tomassoli, I. & Gündisch, D. The twin drug approach for novel nicotinic acetylcholine receptor ligands. Bioorg. Med. Chem. 23, 4375–4389 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Moegling, J. et al. Bis(pyrazolyl)methane copper complexes as robust and efficient catalysts for Sonogashira couplings. Eur. J. Org. Chem. 2015, 7475–7483 (2015).

    CAS  Google Scholar 

  96. Cold Spring Harbor Laboratory. Formaldehyde (37%, w/v). Cold Spring Harb. Protoc. 2008, https://doi.org/10.1101/pdb.rec11372 (2008).

Download references

Acknowledgements

We thank all our colleagues, co-workers, and collaborators, whose names appear in the publications that constitute the basis of this protocol. This work was supported by the University of Trieste, INSTM, AXA Research Fund, the Spanish Ministry of Economy and Competitiveness MINECO (project CTQ2016-76721-R), Diputación Foral de Gipuzkoa program Red (101/16), ELKARTEK bmG2017 (ref: Elkartek KK-2017/00008, BOPV resolution: 8 February 2018) and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (MDM-2017-0720).

Author information

Authors and Affiliations

Authors

Contributions

L.Ð. and F.A. designed and performed the experiments and wrote the manuscript. M.P. planned the research, co-wrote the manuscript and secured the funding.

Corresponding authors

Correspondence to Luka Ðorđević, Francesca Arcudi or Maurizio Prato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Shaomin Shuang and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Arcudi, F., Đorđević, L. & Prato, M. Angew. Chem. Int. Ed. 55, 2107–2112 (2016): https://doi.org/10.1002/anie.201510158

Carrara, S., Arcudi, F., Prato, M. & De Cola, L. Angew. Chem. Int. Ed. 56, 4757–4761 (2017): https://doi.org/10.1002/anie.201611879

Arcudi, F. Đorđević, L. & Prato, M. Angew. Chem. Int. Ed. 56, 4170–4173 (2017): https://doi.org/10.1002/anie.201612160

Arcudi, F. et al. Angew. Chem. Int. Ed. 56, 12097–12101 (2017): https://doi.org/10.1002/anie.201704544

Rizzo, C. et al. ACS Nano 12, 1296–1305 (2018): https://doi.org/10.1021/acsnano.7b07529

Rigodanza, F., Đorđević, L., Arcudi, F. & Prato, M. Angew. Chem. Int. Ed. 57, 5062–5067 (2018): https://doi.org/10.1002/anie.201801707

Ðorđević, L. et al. Nat. Commun. 9, 3442 (2018): https://doi.org/10.1038/s41467-018-05561-2

Integrated supplementary information

Supplementary Figure 1 Time-course illustration of key steps in the preparation of NCNDs.

(a) Reagents and reaction setup for the synthesis of NCNDs. (b) Weigh the arginine powder in a microwave vessel (Step 1). (c-e) Add stir bar and liquids (milli-Q H2O, followed by ethylenediamine) (Steps 2-4). (f-g) Cap the reaction vessel and mix the components (Steps 5-6). (h-j) Microwave-assisted synthesis of NCNDs (Step 7). (k) Reaction vessel after microwave irradiation (after Step 7). (l-p) Filter the crude reaction through a micro-filter (o shows the filtered solution under 365 nm light) (Steps 9-10A(i)). (r-u) Dialyze against pure water of the filtered solution (Step 10A(ii-v). (v-w) Powder NCNDs after freeze-drying the dialyzed solution (Step 10A(vii-viii)).

Supplementary Figure 2 Temperature, pressure and irradiation power monitored during the microwave-assisted synthesis of NCNDs.

(a) Temperature profile (°C). (b) Pressure profile psi). (d) Power profile (Watt).

Supplementary Figure 3 Temperature, pressure and irradiation power monitored during the microwave-assisted synthesis of QCNDs.

(a) Temperature profile (°C). (b) Pressure profile psi). (d) Power profile (Watt).

Supplementary Figure 4 Temperature, pressure and irradiation power monitored during the microwave-assisted synthesis of cNDI∙CNDs.

(a) Temperature profile (°C). (b) Pressure profile psi). (d) Power profile (Watt).

Supplementary Figure 5 Temperature, pressure and irradiation power monitored during the microwave-assisted synthesis of NCNDs-R.

(a) Temperature profile (°C). (b) Pressure profile psi). (d) Power profile (Watt).

Supplementary Figure 6 Characterization of ‘filter’ and ‘dialysate’.

(a) Photographs of the filtration and dialysis steps, which samples were used for further characterization. (b) MALDI-TOF analysis of the NCNDs sample after dialysis for 48 h. (c) UV-Vis spectra in water (298 K). (d) Fluorescence spectra in water (298 K) of the sample left on the filter. (e) Fluorescence spectra in water (298 K) of the ‘dialysate’, which is the sample obtained by rotary evaporation concentration of the dialysate.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ðorđević, L., Arcudi, F. & Prato, M. Preparation, functionalization and characterization of engineered carbon nanodots. Nat Protoc 14, 2931–2953 (2019). https://doi.org/10.1038/s41596-019-0207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0207-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing