Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Regional gene therapy to enhance bone repair

Abstract

Gene therapy presents a novel approach to the treatment of challenging bone loss problems. Recombinant, osteogenic growth factors are now available to enhance bone repair, particularly in those applications related to the treatment of fracture nonunions and the enhancement of fusion of the spine. However, there is concern that a single dose of an exogenous protein will not induce an adequate osteogenic signal in many patients, particularly in those cases where there is compromise of host bone and the surrounding soft tissue. Transfer of genes encoding osteogenic proteins has the potential to overcome the delivery problems associated with the use of the proteins themselves. Bone healing is an attractive application for gene therapy, because long-term protein production is not necessary for many bone repair problems. Therefore, the development of gene therapy strategies to treat bone repair problems promises to be easier than the application of gene therapy to treat chronic diseases. The purpose of this review is to highlight the advantages, disadvantages and clinical potential of various gene therapy strategies to enhance bone repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Arrington ED et al. Complications of iliac crest bone graft harvesting. Clin Orthop 1996: 300–309.

    Article  Google Scholar 

  2. Banwart JC, Asher MA, Hassanein RS . Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 1995; 20: 1055–1060.

    Article  CAS  PubMed  Google Scholar 

  3. Summers BN, Eisenstein SM . Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br 1989; 71: 677–680.

    Article  CAS  PubMed  Google Scholar 

  4. Govender S et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg 2002; 84-A: 2123–2134.

    Article  Google Scholar 

  5. Lieberman JR, Ghivizzani SC, Evans CH . Gene transfer approaches to the healing of bone and cartilage. Mol Ther 2002; 6: 141–147.

    Article  CAS  PubMed  Google Scholar 

  6. Oakes DA, Lieberman JR . Osteoinductive applications of regional gene therapy: ex vivo gene transfer. Clin Orthop 2000; 379 (Suppl): S101–S112.

    Article  Google Scholar 

  7. Baltzer AW et al. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Therapy 2000; 7: 734–739.

    Article  CAS  PubMed  Google Scholar 

  8. Foley R et al. Intramarrow cytokine gene transfer by adenoviral vectors in dogs. Hum Gene Ther 1997; 8: 545–553.

    Article  CAS  PubMed  Google Scholar 

  9. Baltzer AW et al. A gene therapy approach to accelerating bone healing. Evaluation of gene expression in a New Zealand white rabbit model. Knee Surg Sports Traumatol Arthrosc 1999; 7: 197–202.

    Article  CAS  PubMed  Google Scholar 

  10. Lieberman JR et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999; 81: 905–917.

    Article  CAS  PubMed  Google Scholar 

  11. Musgrave DS et al. Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 1999; 24: 541–547.

    Article  CAS  PubMed  Google Scholar 

  12. Alden TD et al. The use of bone morphogenetic protein gene therapy in craniofacial bone repair. J Craniofac Surg 2000; 11: 24–30.

    Article  CAS  PubMed  Google Scholar 

  13. Christ M et al. Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response. Immunol Lett 1997; 57: 19–25.

    Article  CAS  PubMed  Google Scholar 

  14. Molinier-Frenkel V et al. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 2000; 74: 7678–7682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Alden TD et al. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg 1999; 90 (Suppl): 109–114.

    CAS  PubMed  Google Scholar 

  18. Alden TD et al. In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector. Hum Gene Ther 1999; 10: 2245–2253.

    Article  CAS  PubMed  Google Scholar 

  19. Egermann M et al. Host immune response does not impair gene expression after local delivery of adenoviral vector. ORS 2003 Abstract book 2003.

  20. Okubo Y et al. Osteoinduction by bone morphogenetic protein-2 via adenoviral vector under transient immunosuppression. Biochem Biophys Res Commun 2000; 267: 382–387.

    Article  CAS  PubMed  Google Scholar 

  21. Okubo Y et al. In vitro and in vivo studies of a bone morphogenetic protein-2 expressing adenoviral vector. J Bone Joint Surg Am 2000; 83-A (Suppl 1): S99–S104.

    Google Scholar 

  22. Fang J et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA 1996; 93: 5753–5758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonadio J, Smiley E, Patil P, Goldstein S . Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 1999; 5: 753–759.

    Article  CAS  PubMed  Google Scholar 

  24. Viggeswarapu M et al. Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am 2001; 83-A: 364–376.

    Article  CAS  Google Scholar 

  25. Bruder SP, Horowitz MC, Mosca JD, Haynesworth SE . Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 1997; 21: 225–235.

    Article  CAS  PubMed  Google Scholar 

  26. Bruder SP et al. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop 1998(Suppl): S247–S256.

    Article  Google Scholar 

  27. Bruder SP et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16: 155–162.

    Article  CAS  PubMed  Google Scholar 

  28. Peng H et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 2003; 110: 751–759.

    Article  Google Scholar 

  29. Zuk PA et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2003; 7: 211–228.

    Article  Google Scholar 

  30. Peterson B et al. Genetically modified stem cells derived from human adipose tissue can heal critically sized femoral defects in athymic rats. Trans ORS 2003; 28: 194.

    Google Scholar 

  31. Rutherford RB et al. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 2003; 8: 441–452.

    Article  Google Scholar 

  32. Boden SD et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998; 23: 2486–2492.

    Article  CAS  PubMed  Google Scholar 

  33. Steinmann JC, Herkowitz HN . Pseudoarthrosis of the spine. Clin Orthop 1992; 284: 84–90.

    Google Scholar 

  34. Peterson B, Wang J, Zhang J, Lieberman JR . Genetically modified huma derived bone marrow cells for posterolateral lumbar spine fusion via gene therapy. Trans ORS 2003; 28: 425.

    Google Scholar 

  35. Li JZ et al. Osteogenesis in rats induced by a novel recombinant helper-dependent bone morphogenetic protein-9 (BMP-9) adenovirus. J Gene Med 2003; 5: 748–756.

    Article  CAS  PubMed  Google Scholar 

  36. Martinek V et al. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am 2002; 84-A: 1123–1131.

    Article  Google Scholar 

  37. Baltzer AW et al. Potential role of direct adenoviral gene transfer in enhancing fracture repair. Clin Orthop 2000(Suppl): S120–S125.

    Article  Google Scholar 

  38. Mehrara BJ et al. Adenovirus-mediated gene therapy of osteoblasts in vitro and in vivo. J Bone Miner Res 1999; 14: 1290–1301.

    Article  CAS  PubMed  Google Scholar 

  39. Dempster DW et al. Anabolic actions of parathyroid hormone on bone. Endocr Rev 1993; 14: 690–709.

    CAS  PubMed  Google Scholar 

  40. Peng H et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 2002; 110: 751–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reddi AH . Bone and cartilage differentiation. Curr Opin Genet Dev 1994; 4: 737–744.

    Article  CAS  PubMed  Google Scholar 

  42. Reddi AH . Initiation of fracture repair by bone morphogenetic proteins. Clin Orthop 1998; 355 (Suppl): S66–S72.

    Article  Google Scholar 

  43. Street J et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 2002; 99: 9656–9661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harvey BG et al. Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs. J Virol 1999; 73: 6729–6742.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Therapy 2000; 7: 24–30.

    Article  CAS  PubMed  Google Scholar 

  46. Maione D et al. An improved helper-dependent adenoviral vector allows persistent gene expression after intramuscular delivery and overcomes preexisting immunity to adenovirus. Proc Natl Acad Sci USA 2001; 98: 5986–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lollo CP, Banaszczyk MG, Chiou HC . Obstacles and advances in non-viral gene delivery. Curr Opin Mol Ther 2000; 2: 136–142.

    CAS  PubMed  Google Scholar 

  48. Goldstein SA . In vivo nonviral delivery factors to enhance bone repair. Clin Orthop 2000(Suppl): S113–S119.

  49. Spector JA et al. Expression of adenovirally delivered gene products in healing osseous tissues. Ann Plast Surg 2000; 44: 522–528.

    Article  CAS  PubMed  Google Scholar 

  50. Helm GA et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 2000; 92 (Suppl): 191–196.

    CAS  PubMed  Google Scholar 

  51. Boden SD, Kang J, Sandhu H, Heller JG . Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 2002; 27: 2662–2673.

    Article  PubMed  Google Scholar 

  52. Friedlaender GE et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001; 83-A (Suppl 1): S151–S158.

    Google Scholar 

  53. Wang JC et al. The effect of regional gene therapy with bone morphogenetic protein-2 producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 2003; 85: 905–911.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltzer, A., Lieberman, J. Regional gene therapy to enhance bone repair. Gene Ther 11, 344–350 (2004). https://doi.org/10.1038/sj.gt.3302195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302195

Keywords

This article is cited by

Search

Quick links