Skip to main content
Log in

Photophysics and photochemistry of zinc phthalocyanine/bovine serum albumin adducts

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Zinc phthalocyanine (ZnPc) is a well known Type II (singlet oxygen mediated) hydrophobic photosensitizer with potential use in PDT. We have found that the presence of bovine serum albumin diminishes the aggregation degree of ZnPc in aqueous solution, indicating that albumins could be potentially useful carriers for this type of photosensitizer in PDT. In order to explore the photochemical and photophysical behavior of ZnPc associated to the protein, we have evaluated triplet excited state lifetime and yield, dye bleaching, oxygen consumption, formation of carbonyls and peroxides, and the spontaneous chemiluminiscence emitted after photolysis. The results show that dye association to BSA modifies the photophysics and photochemistry of ZnPC. In particular the decreased yield of long lived triplets suggests singlet state and/or static triplet quenching of the bound dye by the hostprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer., 2003, 3, 380–387.

    Article  CAS  Google Scholar 

  2. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  Google Scholar 

  3. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

  4. J. P. Tardivo, A. Del Giglio, L. H. Paschoal and M. S. Baptista, New photodynamic therapy protocol to treat AIDS-related Kaposi’s sarcoma, Photomed. Laser Surg., 2006, 24, 528–531.

    Article  Google Scholar 

  5. K. Plaetzer, B. Krammer, J. Berlanda, F. Berr and T. Kiesslich, Photophysics and photochemistry of photodynamic therapy: fundamental aspects, Lasers Med. Sci., 2008, In Press.

    Google Scholar 

  6. E. A. Lukyanets, Phtalocyanines as photosensitizer in the photodynamic therapy of cancer, J. Porphyrins Phtalocyanines, 1999, 3, 424–432.

    Article  CAS  Google Scholar 

  7. Y. N. Konan, R. Gurny, E. Allémann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol. B., 2002, 66, 89–106.

    Article  CAS  Google Scholar 

  8. B. Li, E. H. Moriyama, F. Li, M. T. Jarvi, C. Allen and B. C. Wilson, Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy, Photochem. Photobiol., 2007, 87, 1505–1512.

    Article  Google Scholar 

  9. M. Bhatti, G. Yahioglu, L. R. Milgrom, M. Garcia-Maya, K. A. Chester and M. P. Deonarain, Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments, Int. J. Cancer, 2008, 122, 1155–1163.

    Article  CAS  Google Scholar 

  10. U. Kragh-Hansen, Structure and ligand binding properties of human serum albumin (rewiev), Dan. Med. Bull., 1990, 37, 57–84.

    CAS  Google Scholar 

  11. X. M. He and D. C. Carter, Atomic structure and chemistry of human serum albumin, Nature, 1992, 16, 209–215.

    Article  Google Scholar 

  12. T. Peters, All about albumin proteins. Academic press, New York, first edn., 1996, ch. 3, pp 164.

    Google Scholar 

  13. F. Ginevra, S. Biffanti, A. Pagnan, R. Biolo, E. Reddi and G. Jori, Delivery of the tumour photosensitizer zinc(II)-phthalocyanine to serum proteins by different liposomes: studies in vitro and in vivo, Cancer Lett., 1990, 49, 59–65.

    Article  CAS  Google Scholar 

  14. T. T. Tominaga, V. E. Yushmanov, I. E. Borissevitch, H. Imasato and M. Tabak, Aggregation phenomena in the complexes of iron tetraphenylporphine sulfonate with bovine serum albumin, J. Inorg. Biochem., 1997, 65, 235–244.

    Article  CAS  Google Scholar 

  15. M. S. Baptista and G. L. Indig, Effect of BSA Binding on Photophysical and Photochemical Properties of Triarylmethane Dyes, J. Phys. Chem. B., 1998, 102, 4678–4688.

    Article  CAS  Google Scholar 

  16. I. E. Borissevitch, T. T. Tominaga, H. Imasato and M. Tabak, Fluorescence and optical absorption study of interaction of two water soluble porphyrins with bovine serum albumin. The role of albumin and porphyrin aggregation, J. Lumin., 1996, 69, 65–76.

    Article  CAS  Google Scholar 

  17. C. Larroque, A. Pelegrin, J. E. Van Lier, Serum albumin as a vehicle for zinc phthalocyanine: photodynamic activities in solid tumour models, Br. J. Cancer, 1996, 74, 1886–1890.

    Article  CAS  PubMed  Google Scholar 

  18. R. K. Pandey, S. Constantine, T. Tsuchida, G. Zheng, C. J. Medforth, M. Aoudia, A. N. Kozyrev, M. A. Rodgers, H. Kato, K. M. Smith and T. J. Dougherty, Synthesis, photophysical properties, in vivo photosensitizing efficacy, and human serum albumin binding properties of some novel bacteriochlorins, J. Med. Chem., 1997, 15, 2770–2779.

    Article  Google Scholar 

  19. T. Tsuchida, G. Zheng, R. K. Pandey, W. R. Potter, D. A. Bellnier, B. W. Henderson, H. Kato and T. J. Dougherty, Correlation between site II-specific human serum albumin (HSA) binding affinity and murine in vivo photosensitizing efficacy of some Photofrin components, Photochem. Photobiol., 1997, 66, 224–228.

    Article  CAS  PubMed  Google Scholar 

  20. X. J. Jiang, J. D. Huang, Y. J. Zhu, F. X. Tang, D. K. Ng and J. C. Sun, Preparation and in vitro photodynamic activities of novel axially substituted silicon (IV) phthalocyanines and their bovine serum albumin adducts, Bioorg. Med. Chem. Lett., 2006, 16, 2450–2453.

    Article  CAS  Google Scholar 

  21. J. D. Huang, P. C. Lo, Y. M. Chen, J. C. Lai, W. P. Fong and D. K. Ng, Preparation and in vitro photodynamic activity of novel silicon (IV) phthalocyanines adductsd to serum albumins, J. Inorg. Biochem., 2006, 100, 946–951.

    Article  CAS  Google Scholar 

  22. M. S. Foley, A. Beeby, A. W. Parker, S. M. Bishop and D. Phillips, Excited triplet state photophysics of the sulphonated aluminium phthalocyanines bound to human serum albumin, J. Photochem. Photobiol. B., 1997, 38, 10–7.

    Article  CAS  Google Scholar 

  23. A. Ogunsipe and T. Nyokong, Photophysicochemical consequences of bovine serum albumin binding to non-transition metal phthalocyanine sulfonates, Photochem. Photobiol. Sci., 2005, 4, 510–516.

    Article  CAS  Google Scholar 

  24. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson and D. C. Klenk, Measurement of protein using bicinchoninic acid, Anal. Biochem., 1985, 150, 76–85.

    Article  CAS  Google Scholar 

  25. M. Kubista, R. Sojback, S. Ericksson and B. Albinsson, Experimental correction for the inner-filter effect in fluorescence spectra, Analyst., 1994, 119, 417–419.

    Article  CAS  Google Scholar 

  26. R. L. Levine, J. A. Williams, E. R. Stadtman and E. Shacter, Carbonyl assays for determination of oxidatively modified proteins, Methods Enzymol., 1994, 233, 346–357.

    Article  CAS  Google Scholar 

  27. Y. Jiang, J. V. Hunt and S. P. Wolff, Ferrous oxidation in the presence of xylenol orange for detection of lipid hydroperoxides in low density lipoproteins, Anal. Biochem., 1992, 202, 384–389.

    Article  CAS  Google Scholar 

  28. E. Alarcón, C. Henríquez, A. Aspée and E. Lissi, Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins, Photochem. Photobiol., 2007, 83, 475–480.

    Article  Google Scholar 

  29. A. H. Terpstra, C. J. Woodward, F. J. Sanchez-Muniz, Improved techniques for the separation of serum lipoproteins by density gradient ultracentrifugation: visualization by pre-staining and rapid separation of serum lipoproteins from small volumes of serum, Anal. Biochem., 1981, 111, 149–157.

    Article  CAS  Google Scholar 

  30. G. D. Fasman, Practical handbook of biochemistry and molecular biology. CRC press Inc, Boca Raton, Florida, first edn., 1989, pp 91.

    Google Scholar 

  31. A. Segalla, C. D. Borsarelli, S. E. Braslavsky, J. D. Spikes, G. Roncucci, D. Dei, G. Chiti, G. Jori and E. Reddi, Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine, Photochem. Photobiol. Sci., 2002, 1, 641–648.

    Article  CAS  Google Scholar 

  32. A. Sgarbossa and F. Lenci, Spectroscopic study of visible light effects on hypericin-lens proteins systems, Photochem. Photobiol., 2001, 74, 196–200.

    Article  CAS  Google Scholar 

  33. K. L. Schey, S. Patat, C. F. Chignell, M. Datilo, R. H. Wang and J. E. Robers, Photooxidation of lens α-crystallin by hypericin, Photochem. Photobiol., 2000, 72, 200–203.

    Article  CAS  Google Scholar 

  34. A. Aspée and E. A. Lissi, Kinetics and mechanism of the chemiluminescence associated with the free radical-mediated oxidation of amino acids, Luminescence, 2000, 15, 273–282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcón, E., Edwards, A.M., Garcia, A.M. et al. Photophysics and photochemistry of zinc phthalocyanine/bovine serum albumin adducts. Photochem Photobiol Sci 8, 255–263 (2009). https://doi.org/10.1039/b815726j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b815726j

Navigation