Skip to main content
Log in

Mechanism of aerobic visible light formic acid oxidation catalyzed by poly(tri-s-triazine) modified titania

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Visible light aerial oxidation of formic acid catalyzed by N/C-modified titania (TiO2-N,C) is investigated by wavelength-dependent photocatalytic and photoelectrochemical experiments in the presence of oxygen, tetranitromethane, and methylviologen as electron acceptors. The title reaction is shown to proceed both through oxidative and reductive primary processes. Contrary to the urea-derived (TiO2-N,C), so-called “N-doped” titania (TiO2-N) as prepared from ammonia is inactive. In accord with photocurrent action spectra of corresponding powder electrodes, this different activity of the two photocatalysts is traced back to the different chemical nature of the reactive holes localized at the modifier. Hole stabilization by delocalization within an extended poly(tri-s-triazine) network of TiO2-N,C is proposed to render recombination with conduction band electrons less probable than in TiO2-N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Balzani, A. Credi and M., Venturi, Photochemical conversion of solar energy ChemSusChem 2008 1 26–58

    Article  CAS  PubMed  Google Scholar 

  2. N. S. Lewis and D. G., Nocera, Powering the planet: chemical challenges in solar energy utilization Proc. Natl. Acad. Sci. U. S. A. 2006 103 15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. X. Qiu and C., Burda, Chemically synthesized nitrogen-doped metal oxide nanoparticles Chem. Phys. 2007 339 1–10

    Article  CAS  Google Scholar 

  4. C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini and E., Giamello, N-doped TiO2: Theory and experiment Chem. Phys. 2007 339 44–56

    Article  CAS  Google Scholar 

  5. A. V. Emeline, V. N. Kuznetsov, V. K. Rybchuk and N., Serpone, Visible-light-active titania photocatalysts: the case of N-doped TiO2s-properties and some fundamental issues Int. J. Photoenergy 2008 2008 258394

    Article  Google Scholar 

  6. S. Sakthivel and H., Kisch, Daylight photocatalysis by carbon-modified titanium dioxide Angew. Chem., Int. Ed. 2003 42 4908–4911

    Article  CAS  Google Scholar 

  7. C. S. Enache, J. Schoonman, R. van de Krol Addition of carbon to anatase TiO2 by n-hexane treatment - surface or bulk doping? Appl. Surf. Sci. 2006 252 6342–6347

    Article  CAS  Google Scholar 

  8. S., Sato, Photocatalytic activity of nitrogen oxide (NOx)-doped titanium dioxide in the visible light region Chem. Phys. Lett. 1986 123 126–128

    Article  CAS  Google Scholar 

  9. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y., Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides Science 2001 293 269–271

    Article  CAS  PubMed  Google Scholar 

  10. S. Sakthivel, M. Janczarek and H., Kisch, Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2 J. Phys. Chem. B 2004 108 19384–19387

    Article  CAS  Google Scholar 

  11. H. Irie, Y. Watanabe and K., Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders J. Phys. Chem. B 2003 107 5483–5486

    Article  CAS  Google Scholar 

  12. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L., Gole, Enhanced Nitrogen Doping in TiO2 Nanoparticles Nano Lett. 2003 3 1049–1051

    Article  CAS  Google Scholar 

  13. T., Ohno, Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities Water Sci. Technol. 2004 49 159–163

    Article  CAS  PubMed  Google Scholar 

  14. D. Mitoraj and H., Kisch, The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light Angew. Chem., Int. Ed. 2008 47 9975–9978

    Article  CAS  Google Scholar 

  15. Y. Nosaka, M. Matsushita, J. Nishino and A. Y., Nosaka, Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds Sci. Technol. Adv. Mater. 2005 6 143–148

    Article  CAS  Google Scholar 

  16. K. Kobayakawa, Y. Murakami and Y., Sato, Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea J. Photochem. Photobiol., A 2005 170 177–179

    Article  CAS  Google Scholar 

  17. S. Yin, K. Ihara, Y. Aita, M. Komatsu and T., Sato, Visible-light induced photocatalytic activity of TiO2-xAy (A = N, S) prepared by precipitation route J. Photochem. Photobiol., A 2006 179 105–114

    Article  CAS  Google Scholar 

  18. S. Yin, K. Ihara, M. Komatsu, Q. Zhang, F. Saito, T. Kyotani and T., Sato, Low temperature synthesis of TiO2-xNy powders and films with visible light responsive photocatalytic activity Solid State Commun. 2006 137 132–137

    Article  CAS  Google Scholar 

  19. J. Yuan, M. Chen, J. Shi and W., Shangguan, Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride Int. J. Hydrogen Energy 2006 31 1326–1331

    Article  CAS  Google Scholar 

  20. D. Chen, Z. Jiang, J. Geng, Q. Wang and D., Yang, Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity Ind. Eng. Chem. Res. 2007 46 2741–2746

    Article  CAS  Google Scholar 

  21. Y. Cong, J. Zhang, F. Chen and M., Anpo, Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity J. Phys. Chem. C 2007 111 6976–6982

    Article  CAS  Google Scholar 

  22. D. Huang, S. Liao, S. Quan, L. Liu, Z. He, J. Wan and W., Zhou, Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process J. Non-Cryst. Solids 2008 354 3965–3972

    Article  CAS  Google Scholar 

  23. G.-S. Shao, X.-J. Zhang, Z.-Y. Yuan Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx Appl. Catal., B 2008 82 208–218

    Article  CAS  Google Scholar 

  24. R. Bacsa, J. Kiwi, T. Ohno, P. Albers and V., Nadtochenko, Preparation, Testing and Characterization of Doped TiO2 Active in the Peroxidation of Biomolecules under Visible Light J. Phys. Chem. B 2005 109 5994–6003

    Article  CAS  PubMed  Google Scholar 

  25. H. Kisch, S. Sakthivel, M. Janczarek and D., Mitoraj, A Low-Band Gap, Nitrogen-Modified Titania Visible-Light Photocatalyst J. Phys. Chem. C 2007 111 11445–11449

    Article  CAS  Google Scholar 

  26. R. Beranek and H., Kisch, Tuning the optical and photoelectrochemical properties of surface-modified TiO2 Photochem. Photobiol. Sci. 2008 7 40–48

    Article  CAS  PubMed  Google Scholar 

  27. S. Yin, Y. Aita, M. Komatsu and T., Sato, Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system J. Eur. Ceram. Soc. 2006 26 2735–2742

    Article  CAS  Google Scholar 

  28. Y. Yamamoto, S. Moribe, T. Ikoma, K. Akiyama, Q. Zhang, F. Saito, S. Tero-Kubota Visible light induced paramagnetic sites in nitrogen-doped TiO2 prepared by a mechanochemical method Mol. Phys. 2006 104 1733–1737

    Article  CAS  Google Scholar 

  29. E. A. Reyes-Garcia, Y. Sun, K. Reyes-Gil and D., Raftery, 15N Solid State NMR and EPR Characterization of N-Doped TiO2 Photocatalysts J. Phys. Chem. C 2007 111 2738–2748

    Article  CAS  Google Scholar 

  30. M. Alvaro, E. Carbonell, V. Fornes and H., Garcia, Enhanced photocatalytic activity of zeolite-encapsulated TiO2 clusters by complexation with organic additives and N-doping ChemPhysChem 2006 7 200–205

    Article  CAS  PubMed  Google Scholar 

  31. M. Mrowetz, W. Balcerski, A. J. Colussi and M. R., Hoffmann, Oxidative Power of Nitrogen-Doped TiO2 Photocatalysts under Visible Illumination J. Phys. Chem. B 2004 108 17269–17273

    Article  CAS  Google Scholar 

  32. H. Chen, A. Nambu, W. Wen, J. Graciani, Z. Zhong, J. C. Hanson, E. Fujita and J. A., Rodriguez, Reaction of NH3 with Titania: N-Doping of the Oxide and TiN Formation J. Phys. Chem. C 2007 111 1366–1372

    Article  CAS  Google Scholar 

  33. S.-K. Joung, T. Amemiya, M. Murabayashi and K., Itoh, Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts Appl. Catal., A 2006 312 20–26

    Article  CAS  Google Scholar 

  34. D. Mitoraj and H. Kisch J. Phys. Chem. C, in print

  35. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M., Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light Nat. Mater. 2009 8 76–80

    Article  CAS  PubMed  Google Scholar 

  36. J. R. Durrant, S. A. Haque and E., Palomares, Towards optimisation of electron transfer processes in dye sensitised solar cells Coord. Chem. Rev. 2004 248 1247–1257

    Article  CAS  Google Scholar 

  37. M. F. J. Dijkstra, H. J. Panneman, J. G. M. Winkelman, J. J. Kelly and A. A. C. M., Beenackers, Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst Chem. Eng. Sci. 2002 57 4895–4907

    Article  CAS  Google Scholar 

  38. F. Shiraishi, T. Nakasako and Z., Hua, Formation of Hydrogen Peroxide in Photocatalytic Reactions J. Phys. Chem. A 2003 107 11072–11081

    Article  CAS  Google Scholar 

  39. S.-H. Yoon, S.-E. Oh, J. E. Yang, J. H. Lee, M. Lee, S. Yu and D., Pak, TiO2 Photocatalytic Oxidation Mechanism of As(III) Environ. Sci. Technol. 2009 43 864–869

    Article  CAS  PubMed  Google Scholar 

  40. E. Pelizzetti and C., Minero, Mechanism of the photooxidative degradation of organic pollutants over titanium dioxide particles Electrochim. Acta 1993 38 47–55

    Article  CAS  Google Scholar 

  41. W. P. Gomes, T. Freund and S. R., Morrison, Chemical reactions involving holes at the zinc oxide single-crystal anode J. Electrochem. Soc. 1968 115 818–823

    Article  CAS  Google Scholar 

  42. M. Mrowetz and E., Selli, Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions J. Photochem. Photobiol., A 2006 180 15–22

    Article  CAS  Google Scholar 

  43. T. L. Villarreal, R. Gomez, M. Neumann-Spallart, N. Alonso-Vante and P., Salvador, Semiconductor Photooxidation of Pollutants Dissolved in Water: A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photoelectrochemical, Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination J. Phys. Chem. B 2004 108 15172–15181

    Article  CAS  Google Scholar 

  44. A. M. Roy, G. C. De, N. Sasmal and S. S., Bhattacharyya, Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement Int. J. Hydrogen Energy 1995 20 627–630

    Article  CAS  Google Scholar 

  45. O. Carp, C. L. Huisman and A., Reller, Photoinduced reactivity of titanium dioxide Prog. Solid State Chem. 2004 32 33–177

    Article  CAS  Google Scholar 

  46. U. K. Klaning, K. Sehested and J., Holcman, Standard Gibbs energy of formation of the hydroxyl radical in aqueous solution. Rate constants for the reaction chlorite (ClO2-) + ozone.dblarw. ozone(1-) + chlorine dioxide J. Phys. Chem. 1985 89 760–763

    Article  CAS  Google Scholar 

  47. O. Legrini, E. Oliveros and A. M. Braun Chem. Rev. 1993 93 671

    Article  CAS  Google Scholar 

  48. E. J., Hart, Mechanism of the g-ray induced oxidation of formic acid in aqueous solution J. Am. Chem. Soc. 1951 73 68–73

    Article  CAS  Google Scholar 

  49. E. J., Hart, g-Ray-induced oxidation of aqueous formic acid-oxygen solutions.sbd.effect of pH J. Am. Chem. Soc. 1954 76 4198–4201

    Article  CAS  Google Scholar 

  50. E. J. Hart and A., Henglein, Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions J. Phys. Chem. 1985 89 4342–4347

    Article  CAS  Google Scholar 

  51. P., Wardman, Reduction potentials of one-electron couples involving free radicals in aqueous solution J. Phys. Chem. Ref. Data 1989 18 1637–1755

    Article  CAS  Google Scholar 

  52. H. A. Schwarz and R. W., Dodson, Reduction potentials of CO2- and the alcohol radicals J. Phys. Chem. 1989 93 409–414

    Article  CAS  Google Scholar 

  53. H. Fricke and E. J. Hart J. Chem. Phys. 1934 2 824

    Article  CAS  Google Scholar 

  54. A., Henglein, Colloidal titanium dioxide-catalyzed photo- and radiation chemical processes in aqueous solution Ber. Bunsen-Ges. 1982 86 241–246

    Article  CAS  Google Scholar 

  55. A. J. Frank, M. Graetzel and A., Henglein, The 347.2 nm laser photolysis of tetranitromethane in polar, nonpolar, and micellar solutions Ber. Bunsen-Ges. 1976 80 593–602

    Article  CAS  Google Scholar 

  56. R. F. Howe, M. Grätzel EPR observation of trapped electrons in colloidal titanium dioxide J. Phys. Chem. 1985 89 4495

    Article  CAS  Google Scholar 

  57. P. V. Kamat, I. Bedja and S., Hotchandani, Photoinduced Charge Transfer between Carbon and Semiconductor Clusters. One-Electron Reduction of C60 in Colloidal TiO2 Semiconductor Suspensions J. Phys. Chem. 1994 98 9137–9142

    Article  CAS  Google Scholar 

  58. H. Kisch, G. Burgeth and W., Macyk, Visible light photocatalysis by a titania transition metal complex Adv. Inorg. Chem. 2004 56 241–259

    Article  CAS  Google Scholar 

  59. D. H. Kim and M. A., Anderson, Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films J. Photochem. Photobiol., A 1996 94 221–229

    Article  CAS  Google Scholar 

  60. S. R. Morrison, The Chemical Physics of Surfaces of Solids, Plenum Press, New York, 1980

    Google Scholar 

  61. W. H. Koppenol and J. F., Liebman, The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+) J. Phys. Chem. 1984 88 99–101

    Article  CAS  Google Scholar 

  62. H. A. Schwarz and R. W., Dodson, Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of hydroxyl(aq) J. Phys. Chem. 1984 88 3643–3647

    Article  CAS  Google Scholar 

  63. D. Behar, G. Czapski, J. Rabani, L. M. Dorfman and H. A., Schwarz, Acid dissociation constant and decay kinetics of the perhydroxyl radical J. Phys. Chem. 1970 74 3209–3213

    Article  CAS  Google Scholar 

  64. M. Cyranski and T. M., Krygowski, Separation of the energetic and geometric contributions to the aromaticity of pi-electron carbocyclics. Part V. Analysis, of the aromatic character of aza-analogs of benzenoid hydrocarbons Tetrahedron 1996 52 13795–13802

    Article  CAS  Google Scholar 

  65. E. Kroke and M., Schwarz, Novel group 14 nitrides Coord. Chem. Rev. 2004 248 493–532

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Kisch.

Additional information

Electronic supplementary information (ESI) available: Photocurrent measured under intermittent irradiation as a function of irradiated wavelength (Fig. S1). See DOI: 10.1039/b9pp00052f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitoraj, D., Beránek, R. & Kisch, H. Mechanism of aerobic visible light formic acid oxidation catalyzed by poly(tri-s-triazine) modified titania. Photochem Photobiol Sci 9, 31–38 (2010). https://doi.org/10.1039/b9pp00052f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00052f

Navigation