Skip to main content
Log in

Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysics and photochemistry of rose bengal (RB) and methylene blue (MB) bound to human serum albumin (HSA) have been investigated under a variety of experimental conditions. Distribution of the dyes between the external solvent and the protein has been estimated by physical separation and fluorescence measurements. The main localization of protein-bound dye molecules was estimated by the intrinsic fluorescence quenching, displacement of fluorescent probes bound to specific protein sites, and by docking modelling. All the data indicate that, at low occupation numbers, RB binds strongly to the HSA site I, while MB localizes predominantly in the protein binding site II. This different localization explains the observed differences in the dyes’ photochemical behaviour. In particular, the environment provided by site I is less polar and considerably less accessible to oxygen. The localization of RB in site I also leads to an efficient quenching of the intrinsic protein fluorescence (ascribed to the nearby Trp residue) and the generation of intra-protein singlet oxygen, whose behaviour is different to that observed in the external solvent or when it is generated by bound MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R., Kanofsky, Singlet oxygen production by lactoperoxidase J. Biol. Chem. 1983 258 10 5991–5993

    Article  CAS  PubMed  Google Scholar 

  2. J. R. Kanofsky, J. Wright, G. E. Miles-Richardson and A. I., Tauber, Biochemical requirements for singlet oxygen production by purified human myeloperoxidase J. Clin. Invest. 1984 74 4 1489–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. R., Kanofsky, Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems J. Biol. Chem. 1984 259 9 5596–5600

    Article  CAS  PubMed  Google Scholar 

  4. M. J. Steinbeck, A. U. Khan and M. J., Kanjorski, Extra cellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and beryline in a polystyrene film J. Biol. Chem. 1993 268 15649–15654

    Article  CAS  PubMed  Google Scholar 

  5. J. R. Kanofsky, H. Hoogland, R. Wever and S. J., Weiss, Singlet oxygen production by human eosinophils J. Biol. Chem. 1988 263 20 9692–9696

    Article  CAS  PubMed  Google Scholar 

  6. M. J., Davies, The oxidative environment and protein damage Biochim. Biophys. Acta, Proteins Proteomics 2005 1703 2 93–109

    Article  CAS  Google Scholar 

  7. M. J., Davies, Singlet oxygen-mediated damage to proteins and its consequences Biochem. Biophys. Res. Commun. 2003 305 3 761–770

    Article  CAS  PubMed  Google Scholar 

  8. A. Wright, W. A. Bubb, C. L. Hawkins and M. J., Davies, Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues Photochem. Photobiol. 2002 76 1 35–46

    Article  CAS  PubMed  Google Scholar 

  9. P. E. Morgan, R. T. Dean and M. J., Davies, Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack Eur. J. Biochem. 2002 269 7 1916–1925

    Article  CAS  PubMed  Google Scholar 

  10. M. Gracanin and M. J., Davies, Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products Free Radical Biol. Med. 2007 42 10 1543–1551

    Article  CAS  Google Scholar 

  11. P. E. Morgan, R. T. Dean and M. J., Davies, Protective mechanisms against peptide and protein peroxides generated by singlet oxygen Free Radical Biol. Med. 2004 36 4 484–496

    Article  CAS  Google Scholar 

  12. A. Wright, C. L. Hawkins and M. J., Davies, Photo-oxidation of cells generates long-lived intracellular protein peroxides Free Radical Biol. Med. 2003 34 6 637–647

    Article  CAS  Google Scholar 

  13. H. Y. Shrivastava and U. N., Balachandran, Protein degradation by peroxide catalyzed by chromium (III): Role of coordinated ligand Biochem. Biophys. Res. Commun. 2000 270 3 749–754

    Article  CAS  PubMed  Google Scholar 

  14. E. R. Stadtman and B. S., Berlett, Reactive oxygen-mediated protein oxidation in aging and disease Chem. Res. Toxicol. 1997 10 5 485–494

    Article  CAS  PubMed  Google Scholar 

  15. K. Kim, S. G. Rhee and E. R., Stadtman, Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron J. Biol. Chem. 1985 260 29 15394–15397

    Article  CAS  PubMed  Google Scholar 

  16. I. E. Kochevar and R. W., Redmond, Photosensitized production of singlet oxygen Methods Enzymol. 2000 319 20–28

    Article  CAS  PubMed  Google Scholar 

  17. D. Severino, H. C. Junqueira, M. Gugliotti, D. S. Gabrielli and M. S., Baptista, Influence of negatively charged interfaces on the ground and excited state properties of Methylene Blue Photochem. Photobiol. 2003 77 5 459–468

    Article  CAS  PubMed  Google Scholar 

  18. D. Gabrielli, E. Belisle, D. Severino, A. J. Kowaltowski and M. S., Baptista, Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions Photochem. Photobiol. 2004 79 3 227–232

    Article  CAS  PubMed  Google Scholar 

  19. J. A. Bartlett and G. L., Indig, Effect of Self-association and Protein Binding on the Photochemical Reactivity of Triarylmethanes. Implications of Noncovalent Interactions on the Competition between Photosensitization Mechanisms Type I and Type II Photochem. Photobiol. 1999 70 4 490–498

    Article  CAS  PubMed  Google Scholar 

  20. D. C., Neckers, Rose Bengal (Review) J. Photochem. Photobiol., A 1989 47 1 1–29

    Article  CAS  Google Scholar 

  21. J. P. Tardivo, A. D. Giglio, C. S. d. Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. d. F. t. Turchiello and M. S., Baptista, Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications Photodiagn. Photodyn. Ther. 2005 2 3 175–191

    Article  CAS  Google Scholar 

  22. B. Zhao, J. Xie and J., Zhao, Binding of hypocrellin B to human serum albumin and photo-induced interactions Biochim. Biophys. Acta, Gen. Subj. 2005 1722 2 124–130

    Article  CAS  Google Scholar 

  23. M. Korínek, R. Dedic, A. Molnár, J. Hála The influence of human serum albumin on the photogeneration of singlet oxygen by meso-tetra(4-sulfonatophenyl)porphyrin. An infrared phosphorescence study J. Fluoresc. 2006 16 3 355–359

    Article  PubMed  CAS  Google Scholar 

  24. P. Vorobey, A. E. Steindal, M. K. Off, A. Vorobey and J., Moan, Influence of Human Serum Albumin on Photodegradation of Folic Acid in Solution Photochem. Photobiol. 2006 82 3 817–822

    Article  CAS  PubMed  Google Scholar 

  25. N. Shishido, K. Nakayama and M., Nakamura, Porphyrin-induced photooxidation of conjugated bilirubin Free Radical Res. 2003 37 10 1061–1067

    Article  CAS  Google Scholar 

  26. U. Kragh-Hansen Structure and ligand binding properties of human serum albumin (Review) Dan. Med. Bull. 1990 37 1 57–84

    CAS  PubMed  Google Scholar 

  27. U. Kragh-Hansen Quantitative analyses of the interaction between calcium ions and human serum albumin Clin. Chem. 1993 39 2 202–208

    Article  CAS  PubMed  Google Scholar 

  28. B., Honore, Conformational changes in human serum albumin induced by ligand binding Phamacol. Toxicol. 1990 66 2 7–26

    Google Scholar 

  29. X. M. He and D. C., Carter, Atomic structure and chemistry of human serum albumin Nature 1992 358 6383 209–215

    Article  CAS  PubMed  Google Scholar 

  30. G. Sudlow, D. J. Birkett and D. N., Wade, The characterization of two specific drug binding sites on human serum albumin Mol. Pharmacol. 1975 11 6 824–832

    CAS  PubMed  Google Scholar 

  31. G. Sudlow, D. J. Birkett and D. N., Wade, Further characterization of specific drug binding sites on human serum albumin Mol. Pharmacol. 1976 12 6 1052–1061

    CAS  PubMed  Google Scholar 

  32. M. Dockal, M. Chang, D. C. Carter and F., Ruker, Five recombinant fragments of human serum albumin-Tools for the characterization of the warfarin binding site Protein Sci. 2000 9 8 1455–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. T. Peters, All about albumin proteins, Academic press, New York, 1st edn, 1996

    Google Scholar 

  34. E. Alarcón, A. M. Edwards, A. M. Garcia, M. Muñoz, A. Aspée, C. D. Borsarelli and E. A., Lissi, Photophysics and photochemistry of Zinc Phthalocyanine/Bovine serum albumin adducts Photochem. Photobiol. Sci. 2009 8 2 255–263

    Article  PubMed  CAS  Google Scholar 

  35. E. Alarcón, A. M. Edwards, A. Aspée, C. D. Borsarelli and E. A., Lissi, Photophysics and photochemistry of rose bengal bound to human serum albumin Photochem. Photobiol. Sci. 2009 8 7 933–943

    Article  PubMed  CAS  Google Scholar 

  36. Y.-J. Hu, W. Lia, Y. Liua, J.-X. Donga, S.-S. Qua Fluorometric investigation of the interaction between methylene blue and human serum albumin J. Pharm. Biomed. Anal. 2005 39 3-4 740–745

    CAS  PubMed  Google Scholar 

  37. J. Nibbs, S. A. Vinogradov, J. M. Vanderkooi and B., Zelent, Flexibility in proteins: tuning the sensitivity to O2 diffusion by varying the lifetime of a phosphorescent sensor in horseradish peroxidase Photochem. Photobiol. 2004 80 1 36–40

    Article  CAS  PubMed  Google Scholar 

  38. M. Khajehpour, I. Rietveld, S. Vinogradov, N. V. Prabhu, K. A. Sharp and J. M., Vanderkooi, Accessibility of oxygen with respect to the heme pocket in horseradish peroxidase Proteins: Struct., Funct., Genet. 2003 53 3 656–666

    Article  CAS  Google Scholar 

  39. S. Papp, T. E. King and J. M., Vanderkooi, Intrinsic tryptophan phosphorescence as a marker of conformation and oxygen diffusion in purified cytochrome oxidase FEBS Lett. 1991 283 1 113–116

    Article  CAS  PubMed  Google Scholar 

  40. M. Kubista, R. Sojback, S. Ericksson and B., Albinsson, Experimental correction for the inner-filter effect in fluorescence spectra Analyst 1994 119 3 417–419

    Article  CAS  Google Scholar 

  41. B. Honore and R., Brodersen, Albumin binding of anti-inflammatory drugs. Utility of a site oriented versus a stoichiometric analysis Mol. Pharmacol. 1984 25 1 137–150

    CAS  PubMed  Google Scholar 

  42. T. C. Pinkerton and K. A., Koeplinger, Determination of warfarin-human serum albumin protein binding parameters by an improved Hummel-Dreyer high-performance liquid chromatographic method using internal surface reversed-phase columns Anal. Chem. 1990 62 19 2114–2122

    Article  CAS  PubMed  Google Scholar 

  43. R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. Lee Hovell and R. Gilliland, GaussView 3.09, Semichem, Inc: Shawnee Mission, Kansas, 2003

    Google Scholar 

  44. A. Pigache, P. Cieplak and F. Y. Dupradeau, in Automatic and highly reproducible RESP and ESP charge derivation: Application to the development of programs RED and X RED, 227th ACS National Meeting, California, 2004, California, 2004

    Google Scholar 

  45. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew and A. J., Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J. Comput. Chem. 1998 19 14 1639–1662

    Article  CAS  Google Scholar 

  46. V. Peyre, V. Lair, V. André, G. le Maire, U. Kragh-Hansen, M. le Maire, J. V. Møller Detergent binding as a sensor of hydrophobicity and polar interactions in the binding cavities of proteins Langmuir 2005 21 19 8865–8875

    Article  CAS  PubMed  Google Scholar 

  47. I. Petitpas, C. E. Petersen, C. E. Ha, A. A. Bhattacharya, P. A. Zunszain, J. Ghuman, N. V. Bhagavan and S., Curry, Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia Proc. Natl. Acad. Sci. U. S. A. 2003 100 11 6440–6445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. F. C. Raymond, G. V. Gerald and N., Alexander, Fluorescence Decay Times: Proteins, Coenzymes, and Other Compounds in Water Science 1967 156 3777 949–951

    Article  Google Scholar 

  49. R. Artali, G. Bombieri, L. Calabi, A. Del Pra A molecular dynamics study of human serum albumin binding sites Farmaco 2005 60 6–7

    Google Scholar 

  50. C. Reichardt, Solvents and solvent effects in organic chemistry, VCH, New York, 2nd edn, 1990

    Google Scholar 

  51. S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K., Kobayashi, Crystal structure of human serum albumin at 2.5 Å resolution Protein Eng., Des. Sel. 1999 12 6 439–446

    Article  CAS  Google Scholar 

  52. Y. Yue, X. Chen, J. Qin and X., Yao, Characterization of the mangiferin-human serum albumin complex by spectroscopic and molecular modeling approaches J. Pharm. Biomed. Anal. 2009 49 3 753–759

    Article  CAS  PubMed  Google Scholar 

  53. Y. Zhang, L. Dong, J. Li and X., Chen, Studies on the interaction of gallic acid with human serum albumin in membrane mimetic environments Talanta 2008 76 2 246–253

    Article  CAS  PubMed  Google Scholar 

  54. D. R. Cardoso, D. W. Franco, K. Olsen, M. L. Andersen and L. F., Skibsted, Reactivity of Bovine Whey Proteins, Peptides, and Amino Acids toward Triplet Riboflavin as Studied by Laser Flash Photolysis J. Agric. Food Chem. 2004 52 21 6602–6606

    Article  CAS  PubMed  Google Scholar 

  55. J. Steinhardt, J. Krijn and J. G., Leidy, Differences between Bovine and Human Serum albumins: Binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence fffects Biochemistry 1971 10 22 4005–4015

    Article  CAS  PubMed  Google Scholar 

  56. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of photochemistry, Mercel Decker Inc, New York, 2nd edn, 1993

    Google Scholar 

  57. S. Nonell and S. E., Braslavsky, Time-Resolved Singlet Oxygen Detection Methods Enzymol. 2000 319 37–49

    Article  CAS  PubMed  Google Scholar 

  58. J. Baier, T. Fuss, C. Pöllmann, C. Wiesmann, K. Pindl, R. Engl, D. Baumer, M. Maier, M. Landthaler, W. Bäumler Theoretical and experimental analysis of the luminescence signal of singlet oxygen for different photosensitizers J. Photochem. Photobiol., B 2007 87 3 163–173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Lissi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcón, E., Edwards, A.M., Aspee, A. et al. Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization. Photochem Photobiol Sci 9, 93–102 (2010). https://doi.org/10.1039/b9pp00091g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00091g

Navigation