Skip to main content
Log in

Photocatalytic degradation of pentachlorophenol by N-F-TiO2: identification of intermediates, mechanism involved, genotoxicity and ecotoxicity evaluation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the present study the photocatalytic degradation of a toxic priority pollutant, PCP, in the presence of N-F codoped TiO2 was explicitly investigated. The efficiency of the process to remove PCP was monitored for the first time through combined evaluation of several aspects: the kinetic study of the PCP degradation, identification of transformation products by a combination of mass spectrometric techniques (HR-LC-MS and GC-MS), assessment of total mineralization during the process, and evaluation of the genotoxicity and ecotoxicity of the initial and treated solutions applying the cytokinesis block micronucleus (CBMN) assay and Microtox assay, respectively. On the basis of identified products, a proposed degradation pathway is presented, involving mainly oxidative dechlorination reactions. Genotoxicity and ecotoxicity studies clearly demonstrated the efficiency of the photocatalytic process in the detoxification as well as in the elimination of genotoxicity and cytotoxicity of the irradiated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sung, S. Z. Lee and H. L., Chan, Kinetic modeling of ring byproducts during ozonation of pentachlorophenol in water Sep. Purif. Technol., 2012 84 125–131

    Article  CAS  Google Scholar 

  2. W. Zheng, H. Yu, X. Wang and W., Qu, Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis Environ. Int., 2012 42 105–116

    Article  CAS  Google Scholar 

  3. WHO, Pentachlorophenol (Environmental Health Criteria 71), Geneva, 1987

    Google Scholar 

  4. J. Ren, S. He, C. Ye, G. Chen and C., Sun, The ozone mass transfer characteristics and ozonation of pentachlorophenol in a novel microchannel reactor Chem. Eng. J., 2012 210 374–384

    Article  CAS  Google Scholar 

  5. I. K. Konstantinou and T. A., Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review Appl. Catal., B, 2004 49 1 1–14

    Article  CAS  Google Scholar 

  6. C. Minero, E. Pelizzetti, S. Malato and J., Blanco, Large solar plant photocatalytic water decontamination: Degradation of pentachlorophenol Chemosphere, 1993 12 2103–2119

    Article  Google Scholar 

  7. G. Mills and M. R., Hoffmann, Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: identification of intermediates and mechanism of reaction Environ. Sci. Technol., 1993 27 8 1681–1689

    Article  CAS  Google Scholar 

  8. W. F. Jardim, S. G. Moraes and M. M. K., Takiyama, Photocatalytic degradation of aromatic chlorinated compounds using TiO2: toxicity of intermediates Water Res., 1997 31 7 1728–1732

    Article  CAS  Google Scholar 

  9. V. B. Manilal, A. Harida, R. Alexander and G. D., Surender, Photocatalytic treatment of toxic organics in wastewater: toxicity of photodegradation products Water Res., 1992 26 1035–1038

    Article  CAS  Google Scholar 

  10. A. E. Giannakas, M. Antonopoulou, Y. Deligiannakis and I., Konstantinou, Preparation, characterization of N-I co-doped TiO2 and catalytic performance toward simultaneous Cr(VI) reduction and benzoic acid oxidation Appl. Catal., B, 2013 140-141 636–645

    Article  CAS  Google Scholar 

  11. A. E. Giannakas, E. Seristatidou, Y. Deligiannakis and I., Konstantinou, Photocatalytic activity of N-doped and N-F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: An EPR study Appl. Catal., B, 2013 460 132–133

    Google Scholar 

  12. L. Rizzo, D. Sannino, V. Vaiano, O. Sacco, A. Scarpa and D., Pietrogiacomi, Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater Appl. Catal., B, 2014 144 369–378

    Article  CAS  Google Scholar 

  13. D. Sannino, V. Vaiano, O. Sacco and P., Ciambelli, Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation J. Environ. Chem. Eng., 2013 1 56–60

    Article  CAS  Google Scholar 

  14. C. Han, M. Pelaez, V. Likodimos, A. G. Kontos, P. Falaras, K. O’Shea and D. D., Dionysiou, Innovative visible light-activated sulfur doped TiO2 films for water treatment Appl. Catal., B, 2011 107 77–87

    Article  CAS  Google Scholar 

  15. K. Govindan, S. Murugesan and P., Maruthamuthu, Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO2 photocatalyst Mater. Res. Bull., 2013 48 1913–1919

    Article  CAS  Google Scholar 

  16. M. Antonopoulou, A. Giannakas and I., Konstantinou, Simultaneous photocatalytic reduction of Cr(VI) and oxidation of benzoic acid in aqueous N-F-codoped TiO2 suspensions: Optimization and modeling using the response surface methodology Int. J. Photoenergy, 2012 DOI:10.1155/2012/520123

    Google Scholar 

  17. OECD Guideline for Testing of Chemicals, Section4/No. 487: In Vitro Mammalian Cell Micronucleus Test (MNvit), http://www.oecd-ilibrary.org/environment/test-no-487-in-vitro-mammalian-cell-micronucleus test_9789264091016-en (accessed: June 2013)

  18. D. Vlastos, C. G. Skoutelis, I. T. Theodoridis, D. R. Stapleton and M. I., Papadaki, Genotoxicity study of photolytically treated 2-chloropyridine aqueous solutions J. Hazard. Mater., 2010 177 892–898

    Article  CAS  Google Scholar 

  19. M. Fenech, W. P. Chang, M. Kirsch-Volders, N. Holland, S. Bonassi and E., Zeiger, HUMN project: detailed description of the scoring criteria for the cytokinesis- block micronucleus assay using isolated human lymphocyte cultures Mutat. Res., 2003 534 65–75

    Article  CAS  Google Scholar 

  20. M. Antonopoulou, V. Papadopoulos and I., Konstantinou, Photocatalytic oxidation of treated municipal wastewaters for the removal of phenolic compounds: optimization and modeling using response surface methodology (RSM) and artificial neural networks (ANNs) J. Chem. Technol. Biotechnol., 2012 87 10 1385–1395

    Article  CAS  Google Scholar 

  21. M. Bauchinger, J. Dresp, E. Schmid and R., Hauf, Chromosome changes in lymphocytes after occupational exposure to pentachlorophenol (PCP) Mutat. Res., 1982 102 83–88

    Article  CAS  Google Scholar 

  22. E. Schmid, M. Bauchinger and J. Dresp, Chromosome analyses of workers from a pentachlorophenol plant, in Mutagens in our Environment, ed. M. Sorsa and H. Vainio, Alan R. Liss, New York, 1982, pp. 471–474

    Google Scholar 

  23. B. Ziemsen, J. Angerer and G., Lehnert, Sister chromatid exchange and chromosomal breakage in pentachloro- phenol (PCP) exposed workers Int. Arch. Occup. Environ. Health, 1987 59 413–417

    Article  CAS  Google Scholar 

  24. M. Pavlica, G. I. V. Klobucar, N. Vetma, R. Erben and D., Papes, Detection of micronuclei in haemocytes of zebra mussel and great ramshorn snail exposed to pentachlorophenol Mutat. Res., 2000 465 145–150

    Article  CAS  Google Scholar 

  25. J. P., Seiler, Pentachlorophenol Mutat. Res., 1991 257 27–47

    Article  CAS  Google Scholar 

  26. M., Czaplicka, Sources and transformations of chlorophenols in the natural Environment Sci. Total Environ., 2004 322 21–39

    Article  CAS  Google Scholar 

  27. B. G. Tehan, E. J. Lloyd, M. G. Wong, W. R. Pitt, J. G. Montana, D. T. Manallack and E., Gancia, Estimation of pKa using semiempirical molecular orbital methods. Part 1: Application to phenols and carboxylic acids Quantum Struct. Act. Rel., 2002 21 457–472

    Article  CAS  Google Scholar 

  28. M. Antonopoulou and I. K., Konstantinou, TiO2 of 2-Isopropyl-3-Methoxy pyrazine taste and odor compound in aquatic systems: Kinetics, degradation pathways and toxicity evaluation Catal. Today DOI:10.1016/j.cattod.2014.03.027, in press

  29. S. Zheng, Y. Cai, K. E. O’Shea TiO2 photocatalytic degradation of phenylarsonic acid J. Photochem. Photobiol., A, 2010 210 61–68

    Article  CAS  Google Scholar 

  30. A. Amine-Khodja, A. Boulkamh and C., Richard, Phototransformation of metobromuron in the presence of TiO2Appl. Catal., B, 2005 59 147–154

    Article  CAS  Google Scholar 

  31. J. F. Benitez, J. L. Acero, F. J. Real, J. García Kinetics of photodegradation and ozonation of pentachlorophenol Chemosphere, 2003 51 651–662

    Article  Google Scholar 

  32. P. K. A. Hong and Y., Zeng, Degradation of pentachlorophenol by ozonation and biodegradability of intermediates Water Res., 2002 36 4243–4254

    Article  CAS  Google Scholar 

  33. J. A. Zimbron and K. F., Reardon, Fenton’s oxidation of pentachlorophenol Water Res., 2009 43 1831–1840

    Article  CAS  Google Scholar 

  34. S.-G. Chung, Y.-S. Chang, J.-W. Choi, K.-Y. Baek, S.-W. Hong, S.-T. Yun, S.-H. Lee Photocatalytic degradation of chlorophenols using star block copolymers: Removal efficiency, by-products and toxicity of catalyst Chem. Eng. J., 2013 215-216 921–928

    Article  CAS  Google Scholar 

  35. X. Fang, H-P. Schuchmann, C. von Sonntag The reaction of the OH radical with pentafluoro-, pentachloro-, pentabromo- and 2,4,6-triiodophenol in water: electron transfer vs. addition to the ring J. Chem. Soc., Perkin Trans. 2, 2000 1391–1398

    Google Scholar 

  36. D., Henschler, Toxicity of Chlorinated Organic Compounds: Effects of the Introduction of Chlorine in Organic Molecules Angew. Chem., Int. Ed. Engl., 1994 33 1920–1935

    Article  Google Scholar 

  37. M. Pera-Titus, V. Garcia-Molina, M. A. Baños J. Giménez and S. Esplugas Degradation of chlorophenols by means of advanced oxidation processes: a general review Appl. Catal., B, 2004 47 219–256

    Article  CAS  Google Scholar 

  38. X.-D. Zhu, Y.-J. Wang, R.-J. Sun, D.-M. Zhou Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2Chemosphere, 2013 92 8 925–932

    Article  CAS  Google Scholar 

  39. F. Yuan, C. Hu, X. Hu, D. Wei, Y. Chen and J., Qu, Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process J. Hazard. Mater., 2011 185 1256–1263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Konstantinou.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00254g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonopoulou, M., Vlastos, D. & Konstantinou, I. Photocatalytic degradation of pentachlorophenol by N-F-TiO2: identification of intermediates, mechanism involved, genotoxicity and ecotoxicity evaluation. Photochem Photobiol Sci 14, 520–527 (2015). https://doi.org/10.1039/c4pp00254g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00254g

Navigation