Issue 13, 2016

Sunlight assisted degradation of dye molecules and reduction of toxic Cr(vi) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite

Abstract

In view of the significant impact of magnetically recoverable catalysts in photocatalytic applications, Fe3O4/reduced graphene oxide (rGO) nanocomposite photocatalyst was synthesized by adopting an eco-friendly solution chemistry approach and has been characterized by high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL) spectroscopy. Fe3O4/rGO nanocomposite is efficiently utilized towards photocatalytic degradation of carcinogenic and mutagenic cationic as well as anionic dye molecules namely methyl green (MG), methyl blue (MB) and rhodamine B (RhB) under direct sunlight irradiation. The Fe3O4/rGO nanocomposite also demonstrated excellent photocatalytic reduction of aqueous Cr(VI) solution to nontoxic aqueous Cr(III) solution of more than 96% within 25 min under sunlight irradiation. Moreover, reusability of the magnetically recovered photocatalyst was studied efficiently up to 10 cycles in the degradation process. The catalyst was also characterized after the degradation of the dye molecule and the particle size of the Fe3O4 nanoparticles on the rGO sheets remained unchanged. The present investigation focuses on the importance of the use of Fe3O4/rGO nanocomposite towards photocatalytic degradation of waste water containing organic dye pollutants and toxic Cr(VI), as an easily recoverable and reusable photocatalyst with potential for many environmental remediation applications.

Graphical abstract: Sunlight assisted degradation of dye molecules and reduction of toxic Cr(vi) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2015
Accepted
15 Jan 2016
First published
18 Jan 2016

RSC Adv., 2016,6, 11049-11063

Sunlight assisted degradation of dye molecules and reduction of toxic Cr(VI) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite

P. K. Boruah, P. Borthakur, G. Darabdhara, C. K. Kamaja, I. Karbhal, M. V. Shelke, P. Phukan, D. Saikia and M. R. Das, RSC Adv., 2016, 6, 11049 DOI: 10.1039/C5RA25035H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements