Skip to main content
Log in

Heterodimerization at the dye sensitized TiO2 surface: an efficient strategy toward quick removal of water contaminants

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Sensitization of wide bandgap semiconductors with heterodimers for better solar light sensitivity has attracted widespread attention in the recent times. However, application of heterodimerization for removing soluble water pollutants from waste water is sparse in the literature. In the present study, we have utilized heterodimerization of a model pollutant methylene blue (MB) with a ruthenium based dye N719 for the removal of the pollutant. We have synthesized N719 functionalized carbonate doped TiO2 microspheres (doped MS) which act as a novel material for the detoxification of MB containing water by adsorbing at the surface and eventually killing by photoinduced reduction under visible light irradiation. The mechanism of surface adsorption and photoreduction of MB are explored using steady state and time resolved spectroscopy studies. We have fabricated two types of prototype devices (flow device and active filter) using the functionalized doped MS. Both the devices show excellent dye removal activity and recyclability. The present study would find relevance in the removal of soluble pollutants from waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Youngblood, S.-H. A. Lee, K. Maeda and T. E. Mallouk, Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors, Acc. Chem. Res., 2009, 42, 1966–1973.

    Article  CAS  Google Scholar 

  2. M. Gratzel, Photoelectrochemical cells, Nature, 2001, 414, 338–344.

    Article  CAS  Google Scholar 

  3. S. Sardar, S. Sarkar, M. T. Z. Myint, S. Al-Harthi, J. Dutta and S. K. Pal, Role of central metal ions in hematoporphyrin-functionalized titania in solar energy conversion dynamics, Phys. Chem. Chem. Phys., 2013, 15, 18562–18570.

    Article  CAS  Google Scholar 

  4. B. E. Hardin, H. J. Snaith and M. D. McGehee, The renaissance of dye-sensitized solar cells, Nat. Photonics, 2012, 6, 162–169.

    Article  CAS  Google Scholar 

  5. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F. E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. NazeeruddinMd, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem., 2014, 6, 242–247.

    Article  CAS  Google Scholar 

  6. G. Qin, Y. Zhang, X. Ke, X. Tong, Z. Sun, M. Liang and S. Xue, Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film, Appl. Catal., B., 2013, 129, 599–605.

    Article  CAS  Google Scholar 

  7. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari and D. D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B., 2012, 125, 331–349.

    Article  CAS  Google Scholar 

  8. C. B. Kc, K. Stranius, P. D’Souza, N. K. Subbaiyan, H. Lemmetyinen, N. V. Tkachenko, F. D’Souza, Sequential Photoinduced Energy and Electron Transfer Directed Improved Performance of the Supramolecular Solar Cell of a Zinc Porphyrin–Zinc Phthalocyanine Conjugate Modified TiO2 Surface, J. Phys. Chem. C, 2013, 117, 763–773.

    Article  Google Scholar 

  9. R. B. M. Koehorst, G. K. Boschloo, T. J. Savenije, A. Goossens and T. J. Schaafsma, Spectral Sensitization of TiO2 Substrates by Monolayers of Porphyrin Heterodimers, J. Phys. Chem. B, 2000, 104, 2371–2377.

    Article  CAS  Google Scholar 

  10. A. J. Mozer, M. J. Griffith, G. Tsekouras, P. Wagner, G. G. Wallace, S. Mori, K. Sunahara, M. Miyashita, J. C. Earles, K. C. Gordon, L. Du, R. Katoh, A. Furube and D. L. Officer, Zn–Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting, J. Am. Chem. Soc., 2009, 131, 15621–15623.

    Article  CAS  Google Scholar 

  11. Y. Liu, H. Lin, J. T. Dy, K. Tamaki, J. Nakazaki, C. Nishiyama, S. Uchida, H. Segawa and J. Li, Kinetics versus Energetics in Dye-Sensitized Solar Cells Based on an Ethynyl-Linked Porphyrin Heterodimer, J. Phys. Chem. C, 2014, 118, 1426–1435.

    Article  CAS  Google Scholar 

  12. X. Zarate, E. Schott, T. Gomez, R. Arratia-Pérez, Theoretical Study of Sensitizer Candidates for Dye-Sensitized Solar Cells: Peripheral Substituted Dizinc Pyrazinoporphyrazine–Phthalocyanine Complexes, J. Phys. Chem. A, 2013, 117, 430–438.

    Article  CAS  Google Scholar 

  13. A. F. Nogueira, L. F. O. Furtado, A. L. B. Formiga, M. Nakamura, K. Araki and H. E. Toma, Sensitization of TiO2 by Supramolecules Containing Zinc Porphyrins and Ruthenium–Polypyridyl Complexes, Inorg. Chem., 2004, 43, 396–398.

    Article  CAS  Google Scholar 

  14. Z. S. Seddigi, S. A. Ahmed, S. Sardar and S. K. Pal, Ultrafast dynamics at the zinc phthalocyanine/zinc oxide nanohybrid interface for efficient solar light harvesting in the near red region, Sol. Energy Mater. Sol. Cells, 2015, 143, 63–71.

    Article  CAS  Google Scholar 

  15. J. P. Escalada, V. B. Arce, G. V. Porcal, M. A. Biasutti, S. Criado, N. A. García, D. O. Mártire, The effect of dichlorophen binding to silica nanoparticles on its photosensitized degradation in water, Water Resour, 2014, 50, 229–236.

    Article  CAS  Google Scholar 

  16. V. Vaiano, O. Sacco, D. Sannino and P. Ciambelli, Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts, Chem. Eng. J., 2015, 261, 3–8.

    Article  CAS  Google Scholar 

  17. N. Nasuha, B. H. Hameed, A. T. M. Din, Rejected tea as a potential low-cost adsorbent for the removal of methylene blue, J. Hazard. Mater., 2010, 175, 126–132.

    Article  CAS  Google Scholar 

  18. B. Liu, L.-M. Liu, X.-F. Lang, H.-Y. Wang, X. W. Lou and E. S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production, Energy Environ. Sci., 2014, 7, 2592–2597.

    Article  CAS  Google Scholar 

  19. Z.-Q. Li, Y.-P. Que, L.-E. Mo, W.-C. Chen, Y. Ding, Y.-M. Ma, L. Jiang, L.-H. Hu, S.-Y. Dai, One-Pot Synthesis of Mesoporous TiO2 Micropheres and Its Application for High-Efficiency Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 2015, 7, 10928–10934.

    Article  CAS  Google Scholar 

  20. S. Sardar, P. Kar and S. K. Pal, The Impact of Central Metal Ions in Porphyrin Functionalized ZnO/TiO2 for Enhanced Solar Energy Conversion, J. Mater. NanoSci., 2014, 1, 12–30.

    Google Scholar 

  21. S. Sardar, P. Kar, S. Sarkar, P. Lemmens and S. K. Pal, Interfacial carrier dynamics in PbS-ZnO light harvesting assemblies and their potential implication in photovoltaic/ photocatalysis application, Sol. Energy Mat. Sol. Cells, 2015, 134, 400–406.

    Article  CAS  Google Scholar 

  22. S. Sardar, P. Kar, H. Remita, B. Liu, P. Lemmens, S. Kumar Pal and S. Ghosh, Enhanced Charge Separation and FRET at Heterojunctions between Semiconductor Nanoparticles and Conducting Polymer Nanofibers for Efficient Solar Light Harvesting, Sci. Rep., 2015, 5, 17313.

    Article  CAS  Google Scholar 

  23. R. J. Baxter and P. Hu, Insight into why the Langmuir–Hinshelwood mechanism is generally preferred, J. Chem. Phys., 2002, 116, 4379–4381.

    Article  CAS  Google Scholar 

  24. S. Sardar, S. Chaudhuri, P. Kar, S. Sarkar, P. Lemmens and S. K. Pal, Direct observation of key photoinduced dynamics in a potential nano-delivery vehicle of cancer drugs, Phys. Chem. Chem. Phys., 2015, 17, 166–177.

    Article  CAS  Google Scholar 

  25. Z. S. Seddigi, S. A. Ahmed, S. Sardar and S. K. Pal, Carbonate Doping in TiO2 Microsphere: The Key Parameter Influencing Others for Efficient Dye Sensitized Solar Cell, Sci. Rep., 2016, 6, 23209.

    Article  CAS  Google Scholar 

  26. H. C. Junqueira, D. Severino, L. G. Dias, M. S. Gugliotti and M. S. Baptista, Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces, Phys. Chem. Chem. Phys., 2002, 4, 2320–2328.

    Article  CAS  Google Scholar 

  27. C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi and H. Tamiaki, Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film, Thin Solid Films, 2008, 516, 5881–5884.

    Article  CAS  Google Scholar 

  28. A. Mills and J. Wang, Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?, J. Photochem. Photobiol., A, 1999, 127, 123–134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saleh A. Ahmed or Samir Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seddigi, Z.S., Ahmed, S.A., Sardar, S. et al. Heterodimerization at the dye sensitized TiO2 surface: an efficient strategy toward quick removal of water contaminants. Photochem Photobiol Sci 15, 920–927 (2016). https://doi.org/10.1039/c6pp00071a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00071a

Navigation