Skip to main content
Log in

Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles as photosensitizers for photodynamic therapy against ovarian cancer (SKOV-3) cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles, Fe3O4@SiO2@APTES@PPa (FSAP), were designed as magnetically targeted photodynamic antineoplastic agents and prepared through continuous covalent chemical modification on the surface of Fe3O4 nanoparticles. The properties of the intermediates and the final product were comprehensively characterized by transmission electron microscopy, powder X-ray diffraction analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometry, zeta potential measurement, ultraviolet-visible absorption spectroscopy, fluorescence emission spectroscopy, and thermogravimetric analysis. In this work, we demonstrated the in vitro photodynamic therapy (PDT) of FSAP against ovarian cancer (SKOV-3) cells, which indicated that FSAP could be taken up successfully and showed low dark toxicity without irradiation, but remarkable phototoxicity after irradiation. Meanwhile, FSAP had showed good biocompatibility and low dark toxicity against normal cells in the biological experiments on mouse normal fibroblast cell lines (L929 cells). In addition, in the photochemical process of FSAP mediated photodynamic therapy, the Type-II photo-oxygenation process (generated singlet oxygen) played an important role in the induction of cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. M. Dąbrowski and L. G., Arnaut, Photodynamic therapy (PDT) of cancer: from local to systemic treatment, Photochem. Photobiol. Sci., 2015, 14 1765–1780

    Article  PubMed  CAS  Google Scholar 

  2. T.-G. Ahn, B.-R. Lee, E.-Y. Choi, D. W. Kim and S.-J. Han, Photodynamic therapy for breast cancer in a BALB/c mouse model, J. Gynecol. Oncol., 2012, 23 115–119

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. G. Bredell, E. Besic, C. Maake and H., Walt, The application and challenges of clinical PD-PDT in the head and neck region: A short review, J Photochem. Photobiol., B, 2010, 101 185–190

    Article  CAS  Google Scholar 

  4. A. M., Bugaj, Targeted photodynamic therapy - a promising strategy of tumor treatment, Photochem. Photobiol. Sci., 2011, 10 1097–1109

    Article  CAS  PubMed  Google Scholar 

  5. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J., Golab, Photodynamic therapy of cancer: An update, CA-Cancer J. Clin., 2011, 61 250–281

    Article  PubMed  PubMed Central  Google Scholar 

  6. D. E. Dolmans, D. Fukumura and R. K., Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3 380–387

    Article  CAS  PubMed  Google Scholar 

  7. K. Stefflova, J. Chen and G., Zheng, Using molecular beacons for cancer imaging and treatment, Curr. Med. Chem., 2007, 12 4709–4721

    CAS  Google Scholar 

  8. T. Liu, L. Y. Wu, J. K. Choi and C. E., Berkman, In vitro targeted photodynamic therapy with a pyropheophorbide-a conjugated inhibitor of prostate-specific membrane antigen, Prostate, 2009, 69 585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. A. Ryan and M. O., Senge, How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics, Photochem. Photobiol. Sci., 2015, 14 638–660

    Article  CAS  PubMed  Google Scholar 

  10. M. Kaplanová and L., Parma, Effect of excitation and emission wavelength on the fluorescence lifetimes of chlorophyll a, Gen. Physiol. Biophys., 1984, 3 127–134

    PubMed  Google Scholar 

  11. I. Stamati, M. K. Kuimova, M. Lion, G. Yahioglu, D. Phillips and M. P., Deonarain, Novel photosensitisers derived from pyropheophorbide-a: uptake by cells and photodynamic efficiency in vitro, Photochem. Photobiol. Sci., 2010, 9 1033–1041

    Article  CAS  PubMed  Google Scholar 

  12. Y. N. Konan, R. Gurny and E., Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2002, 66 89–106

    Article  CAS  Google Scholar 

  13. W. M. Sharman, J. E. Van-Lier and C. M., Allen, Targeted photodynamic therapy via receptor mediated delivery systems, Adv. Drug Delivery Rev., 2004, 56 53–76

    Article  CAS  Google Scholar 

  14. M. R. Hamblin, M. D. Governatore, I. Rizvi and T., Hasan, Biodistribution of charged 17.1A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer, Br. J. Cancer, 2000, 83 1544–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. O. Abu-Yousif, A. C. E. Moor, X. Zheng, M. D. Savellano, W. Yu, P. K. Selbo and T., Hasan, Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in cervical cancer cells, Cancer Lett., 2012, 321 120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Tuerk and L., Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 1990, 249 505–510

    Article  CAS  PubMed  Google Scholar 

  17. M. R. Hamblin, J. L. Miller, I. Rizvi, B. Ortel, E. V. Maytin and T., Hasan, Pegylation of a chlorin (e6) polymer conjugate increases tumor targeting of photosensitizer, Cancer Res., 2001, 61 7155–7162

    CAS  PubMed  Google Scholar 

  18. Y. Min, M. Akbulut, K. Kristiansen, Y. Golan and J., Israelachvili, The role of interparticle and external forces in nanoparticle assembly, Nat. Mater., 2008, 7 527–538

    Article  CAS  PubMed  Google Scholar 

  19. D. G. Yu, X. Y. Li, X. Wang, J. H. Yang, S. W. Bligh and G. R., Williams, Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems, ACS Appl. Mater. Interfaces, 2015, 26 18891–18897

    Article  CAS  Google Scholar 

  20. Y. Cheng, A. Csamia and J., Dmeyers, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 2008, 130 10643–10647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. H. Kariminezhad, S. Khayatomrani and S., Habibzadeh, The Synthesis of methylene blue photosensitiser conjugated with gold nanoparticles, Adv. Mater. Res., 2013, 829 299–303

    Article  CAS  Google Scholar 

  22. M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic and D. A., Russell, Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’, Photochem. Photobiol. Sci., 2006, 5 727–734

    Article  CAS  PubMed  Google Scholar 

  23. V. Raghavan, J. M. Connolly, H. M. Fan, P. Dockery and A., Wheatley, Gold Nanosensitisers for Multimodal Optical Diagnostic Imaging and Therapy of Cancer, J. Nanomed. Nanotechnol., 2014, 5 238–243

    Google Scholar 

  24. M. K. K. Oo, X. Yang, H. Du and H., Wang, 5-Aminolevulinicacid-conjugated gold nanoparticles for photodynamic therapy of cancer, Nanomedicine, 2008, 3 777–786

    Article  CAS  PubMed  Google Scholar 

  25. J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizekand and J., Hubalek, Magnetic nanoparticles and targeted drug delivering, Pharmacol. Res., 2010, 62 144–149

    Article  CAS  PubMed  Google Scholar 

  26. H. Hu, H. Yang, D. Li, K. Wang, J. Ruan, X. Zhang, J. Chen, C. Bao, J. Ji, D. Shi and D., Cui, The potential of magnetic nanocluster and dual-functional protein-based strategy for noninvasive detection of HBV surface antibodies, Analyst, 2011, 136 679–683

    Article  CAS  PubMed  Google Scholar 

  27. L. Li, M. Nurunnabi, M. Nafiujjaman, Y. Y. Jeong, Y. k. Lee and K. M., Huh, A pho tosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy, J. Mater. Chem. B, 2014, 2 2929–2937

    Article  CAS  PubMed  Google Scholar 

  28. P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang and H., Song, Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy, Biomaterials, 2011, 32 3447–3458

    Article  CAS  PubMed  Google Scholar 

  29. O. Penon, M. J. Marín, D. B. Amabilino, D. A. Russell and L. Pérez-García, Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy, J. Colloid Interface Sci., 2016, 462 154–165

    Article  CAS  PubMed  Google Scholar 

  30. S. Zhang, L. Yang, X. Ling, P. Shao, X. Wang, W. B. Edwards and M., Bai, Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer, Acta Biomater., 2015, 28 160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. F. Wang, X. Chen, Z. Zhao, S. Tang, X. Huang, C. Lin, C. Cai and N., Zheng, Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy, J. Mater. Chem., 2011, 21 11244–11252

    Article  CAS  Google Scholar 

  32. L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey and P. N., Prasad, Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy, Mol. Pharm., 2006, 3 415–423

    Article  CAS  PubMed  Google Scholar 

  33. J. Gao, X. Ran, C. Shi, H. Cheng, T. Cheng and Y., Su, One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters, Nanoscale, 2013, 5 7026–7033

    Article  CAS  PubMed  Google Scholar 

  34. J. J. Cheng, G. H. Tan, W. T. Li, J. H. Li, Z. Q. Wang and Y. X., Jin, Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide-a-conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer, RSC Adv., 2016, 6 37610–37620

    Article  CAS  Google Scholar 

  35. J. N. Park, K. J. An, Y. S. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. H., Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 2004, 3 891–895

    Article  CAS  PubMed  Google Scholar 

  36. K. P. Naidek, F. Bianconi, T. C. R. da Rocha, D. Zanchet, J. A. Bonacin, M. A. Novak, M. G. F. Vaz and H., Winnischofer, Structure and morphology of spinel MFe2O4 (M=Fe, Co, Ni) nanoparticles chemically synthesized from heterometallic complexes, J. Colloid Interface Sci., 2011, 358 39–46

    Article  CAS  PubMed  Google Scholar 

  37. F. Liu, X. Zhou, S. Ni, X. Wang, Y. Zhou and Z., Chen, Preparation and properties of photosensitizer loaded magnetic nanocarriers, Curr. Nanosci., 2009, 5 293–296

    Article  CAS  Google Scholar 

  38. Z. Li, C. Wang, L. Cheng, H. Gong, S. Yin, Q. Gong, Y. Li and Z., Liu, PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy, Biomaterials, 2013, 34 9160–9170

    Article  CAS  PubMed  Google Scholar 

  39. S. Shi, X. Zhu, Z. Zhao, W. Fang, M. Chen, Y. Huang and X., Chen, Photothermally enhanced photodynamic therapy based on mesoporous Pd@Ag@mSiO2 nanocarriers, J. Mater. Chem. B, 2013, 1 1133–1141

    Article  CAS  PubMed  Google Scholar 

  40. P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu and D., Cui, Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy, Biomaterials, 2011, 32 3447–3458

    Article  CAS  PubMed  Google Scholar 

  41. W. T. Li, G. H. Tan, J. J. Cheng, L. S. Zhao, Z. Q. Wang and Y. X., Jin, A Novel Photosensitizer 31,131-phenylhydrazine-Mppa (BPHM) and its in vitro Photodynamic Therapy against SKOV-3 Cells, Molecules, 2016, 21 558–569

    Article  PubMed Central  CAS  Google Scholar 

  42. J. P., Kehrer, The Haber-Weiss reaction and mechanisms of toxicity, Toxicology, 2000, 149 43–50

    Article  CAS  PubMed  Google Scholar 

  43. J. R. Sparrow, J. Zbou and B., Cai, DNA is a target of the photodynamic effects elicited in A2E-Laden RPE by blue-light illumination, Invest. Ophthalmol Visual Sci., 2003, 44 2245–2251

    Article  Google Scholar 

  44. T. Ashikaga, M. Wada, H. Kobayashi, M. Moria, Y. Katsumura, H. Fukui, S. Kato, M. Yamaguchi and T., Takamatsu, Effect of the photocatalytic activity of TiO2 on plasmid DNA, Mutat. Res., 2000, 466 1–7

    Article  CAS  PubMed  Google Scholar 

  45. E. S. Nyman and P. H., Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 73 1–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingxue Jin, Changhong Guo or Fengyu Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, G., Li, W., Cheng, J. et al. Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles as photosensitizers for photodynamic therapy against ovarian cancer (SKOV-3) cells. Photochem Photobiol Sci 15, 1567–1578 (2016). https://doi.org/10.1039/c6pp00340k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00340k

Navigation