Issue 20, 2021, Issue in Progress

High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method

Abstract

Nd2Fe14B nanoparticles are widely used because of their outstanding hard magnetic properties. In fact, Pr2Fe14B has higher magneto-crystalline anisotropy than Nd2Fe14B, which makes Pr-Fe-B a promising magnetic material. However, the chemical synthesis route to Pr2Fe14B nanoparticles is challenging because of the higher reduction potential of Pr3+, as well as the complex annealing conditions. In this work, Pr2Fe14B nanoparticles were successfully synthesized via an efficient and green mechanochemical method consisting of high energy ball milling, annealing, and a washing process. Microstructural investigations revealed that the oxide precursors were uniformly wrapped by CaO and CaH2, which formed an embedded structure after ball milling. Then, Pr2Fe14B powder was synthesized via a time-saving annealing process. The impact of the Pr2O3 content and the preparation conditions was investigated. The coercivity of the as-annealed powder with 100 wt% Pr2O3 excess is 18.9 kOe. After magnetic alignment, the coercivity, remanence, and maximum energy product were: 9.8 kOe, 78.4 emu g−1, and 9.8 MGOe, respectively. The present work provides a promising strategy for preparing anisotropic Pr-Fe-B permanent magnetic materials.

Graphical abstract: High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method

Article information

Article type
Paper
Submitted
09 Mar 2021
Accepted
13 Mar 2021
First published
29 Mar 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 12315-12320

High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method

X. Shang, H. Tu, J. Zhang, B. Ni, L. Wang, M. Wang, C. Wu and Z. Zhao, RSC Adv., 2021, 11, 12315 DOI: 10.1039/D1RA01846A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements