Issue 5, 2023

N 1s core-level binding energies in nitrogen-doped carbon nanotubes: a combined experimental and theoretical study

Abstract

We report a combined experimental and theoretical study dedicated to analyze the N 1s core-level binding energies (CLBE) in N-doped carbon nanotubes (N-CNTs). X-ray photoelectron spectroscopy (XPS) data are obtained from N-CNT samples synthesized using the chemical vapor deposition technique. Extensive density functional theory (DFT) calculations are performed on various model single- and double-walled N-CNTs where N 1s CLBEs are determined using Koopman's theorem. However, we also present additional calculations within the (Z + 1) approximation to analyze the role of final-state effects. From XPS data up to 2 at% of N content was found in our samples and the high resolution analysis of the N 1s line shows, according to previous experimental results, that N species exist in CNTs as graphitic, pyrrolic, pyridinic, and molecular configurations. However, peak decomposition is characterized by five broad Gaussian curves that overlap considerably among them, having different widths and heights, implying a more complex distribution of N atoms within the structures. DFT calculations performed on model N-CNTs reveal a strong dependence of N 1s CLBE values and their shifts on the local atomic environment. Different types of graphitic N cover an energy range of 3 eV, while various configurations for pyridinic, pyrrolic, and molecular species reveal a dispersion in their energy values of 5.7, 2.7, and 5.2 eV, respectively. The previous distributions of theoretical CLBEs also strongly overlap, implying that some peaks in the XPS spectra must be understood as composite signals where the signals of different N defects coexist. We find, in agreement with the experimental data, that freestanding molecular nitrogen and (weakly interacting) encapsulated N2 within the hollow core of model CNTs have very similar CLBEs. Furthermore, we predict that chemisorbed N2 on defective regions of the nanotube walls has N 1s binding energy values that are considerably larger when compared to encapsulated N2, thus making possible their identification. In contrast to previous reports, we find a nontrivial dependence between CLBEs and the local electronic occupation at N sites. The assignment of spectral details in the XPS data to well-defined N-defects on CNTs is not straightforward and needs to be more deeply analyzed.

Graphical abstract: N 1s core-level binding energies in nitrogen-doped carbon nanotubes: a combined experimental and theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2022
Accepted
06 Jan 2023
First published
06 Jan 2023

Phys. Chem. Chem. Phys., 2023,25, 3718-3736

N 1s core-level binding energies in nitrogen-doped carbon nanotubes: a combined experimental and theoretical study

G. Azuara-Tuexi, E. Muñoz-Sandoval and R. A. Guirado-López, Phys. Chem. Chem. Phys., 2023, 25, 3718 DOI: 10.1039/D2CP04701B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements