Skip to main content
Log in

Photophysics of (CdSe)ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Using a combination of two amino acids, histidine and N-acetyl-cysteine, to replace the original organic capping groups of (CdSe)ZnS quantum dots, water-soluble and highly luminescent (CdSe)ZnS quantum dots have been successfully prepared at pH 8. Characterization by steady-state and time-resolved photoluminescence spectroscopy, and transient absorption spectroscopy, demonstrate that the electronic properties of these quantum dots exceed those of the original as-synthesized samples dissolved in a more-conventional organic solvent. Furthermore, these amino acid-stabilized quantum dots have been assembled onto a cellulose substrate via cellulose binding proteins that specifically bind to cellulose and was genetically engineered to harbor dual hexahistidine tags at the N- and C-termini to confer binding with the zinc(ii) on the quantum dot surface. The spectroscopic measurements show that the protein-bound quantum dots continue to retain their desirable electronic properties when bound on the substrate. Meanwhile, the specific and very selective binding properties of the proteins have remained effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Murray, D. J. Norris and M. G. Bawendi, Synthesis And Characterization Of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc., 1993, 115, 8706–8715.

    Google Scholar 

  2. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague and A. J. Nozik, Synthesis And Characterization Of Inp Quantum Dots, J. Phys. Chem., 1994, 98, 4966–4969.

    Google Scholar 

  3. M. R. Salvador, M. A. Hines and G. D. Scholes, Exciton-bath coupling and inhomogeneous broadening in the optical spectroscopy of semiconductor quantum dots, J. Chem. Phys., 2003, 118, 9380–9388.

    Google Scholar 

  4. C. Landes, M. A. El-Sayed, Thermodynamic and kinetic characterization of the interaction between N-butylamine and similar to 1 nm CdSe nanoparticles, J. Phys. Chem. A, 2002, 106, 7621–7627.

    Google Scholar 

  5. C. Landes, C. Burda, M. Braun, M. A. El-Sayed, Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-butylamine, J. Phys. Chem. B, 2001, 105, 2981–2986.

    Google Scholar 

  6. P. Guyot-Sionnest, B. Wehrenberg and D. Yu, Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands, J. Chem. Phys., 2005, 123, 074709.

    Google Scholar 

  7. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec and M. G. Bawendi, Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc., 2000, 122, 12142–12150.

    Google Scholar 

  8. W. C. W. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han and S. M. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol., 2002, 13, 40–46.

    Google Scholar 

  9. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaber, vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 2002, 298, 1759–1762.

    Google Scholar 

  10. M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science, 1998, 281, 2013–2016.

    Google Scholar 

  11. C. R. Bagshaw and D. Cherny, Blinking fluorophores: what do they tell us about protein dynamics?, Biochem. Soc. Trans., 2006, 34, 979–982.

    Google Scholar 

  12. S. Y. Ding, M. Jones, M. P. Tucker, J. M. Nedeljkovic, J. Wall, M. N. Simon, G. Rumbles and M. E. Himmel, Quantum dot molecules assembled with genetically engineered proteins, Nano Lett., 2003, 3, 1581–1585.

    Google Scholar 

  13. S. Y. Ding, G. Rumbles, M. Jones, M. P. Tucker, J. Nedeljkovic, M. N. Simon, J. S. Wall and M. E. Himmel, Bioconjugation of (CdSe)ZnS quantum dots using a genetically engineered multiple polyhistidine tagged cohesin/dockerin protein polymer, Macromol. Mater. Eng., 2004, 289, 622–628.

    Google Scholar 

  14. S. Hohng and T. Ha, Near-complete suppression of quantum dot blinking in ambient conditions, J. Am. Chem. Soc., 2004, 126, 1324–1325.

    Google Scholar 

  15. M. Jones, S. Y. Ding, M. P. Tucker, Y. H. Kim, S. B. Zhang, M. E. Himmel and G. Rumbles, Stabilization of (CdSe)ZnS Quantum Dots in Water Using Amino Acid Capping Groups, in 205th Meeting of the Electrochemical Society, ed. G. L. Rumbles and T. Murakoshi, Electrochemical Society Inc., San Antonio, Texas, 2006, pp. 340–349.

    Google Scholar 

  16. P. Gockel, H. Vahrenkamp and A. D. Zuberbuhler, Zinc-Complexes Of Cysteine, Histidine, And Derivatives Thereof-Potentiometric Determination Of Their Compositions And Stabilities, Helv. Chim. Acta, 1993, 76, 511–520.

    Google Scholar 

  17. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss and A. P. Alivisatos, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B, 2001, 105, 8861–8871.

    Google Scholar 

  18. S. Y. Ding, E. A. Bayer, D. Steiner, Y. Shoham and R. Lamed, A novel cellulosomal scaffolding from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase, J. Bacteriol., 1999, 181, 6720–6729.

    Google Scholar 

  19. H. Jung, D. B. Wilson and L. P. Walker, Binding and reversibility of thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose, Biotechnol. Bioeng., 2003, 84, 151–159.

    Google Scholar 

  20. R. J. Ellingson, J. L. Blackburn, J. Nedeljkovic, G. Rumbles, M. Jones, H. X. Fu and A. J. Nozik, Theoretical and experimental investigation of electronic structure and relaxation of colloidal nanocrystalline indium phosphide quantum dots, Phys. Rev. B, 2003, 67, 075308.

    Google Scholar 

  21. S. Y. Ding, Q. Xu, M. K. Ali, J. O. Baker, E. A. Bayer, Y. Barak, R. Lamed, J. Sugiyama, G. Rumbles and M. E. Himmel, Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution, Biotechniques, 2006, 41, 435.

    Google Scholar 

  22. Q. Xu, X. Ai, P. Ahrenkiel, M. Jones, M. P. Tucker, G. Rumbles, M. E. Himmel and S. Y. Ding, Bioengineered Carbohydrate-Binding Protein Modules designed to Assemble Linear Arrays of Quantum Dots on Cellulose Nanocrystals, to be submitted.

  23. P. R. Yu, J. M. Nedeljkovic, P. A. Ahrenkiel, R. J. Ellingson and A. J. Nozik, Size dependent femtosecond electron cooling dynamics in CdSe quantum rods, Nano Letters, 2004, 4, 1089–1092.

    Google Scholar 

  24. V. I. Klimov, D. W. McBranch, C. A. Leatherdale and M. G. Bawendi, Electron and hole relaxation pathways in semiconductor quantum dots, Phys. Rev. B, 1999, 60, 13740–13749.

    Google Scholar 

  25. V. I. Klimov, Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals, J. Phys. Chem. B, 2000, 104, 6112–6123.

    Google Scholar 

  26. C. B. Murray, C. R. Kagan and M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Ann. Rev. Mater. Sci., 2000, 30, 545–610.

    Google Scholar 

  27. T. Takagahara, Effects Of Dielectric Confinement And Electron-Hole Exchange Interaction On Excitonic States In Semiconductor Quantum Dots, Phys. Rev. B, 1993, 47, 4569–4585.

    Google Scholar 

  28. C. A. Leatherdale and M. G. Bawendi, Observation of solvatochromism in CdSe colloidal quantum dots, Phys. Rev. B, 2001, 6316, 165315.

    Google Scholar 

  29. T. Jin, F. Fujii, E. Yamada, Y. Nodasaka and M. Kinjo, Control of the optical properties of quantum dots by surface coating with calix[n]arene carboxylic acids, J. Am. Chem. Soc., 2006, 128, 9288–9289.

    Google Scholar 

  30. G. Kalyuzhny and R. W. Murray, Ligand effects on optical properties of CdSe nanocrystals, J. Phys. Chem. B, 2005, 109, 7012–7021.

    Google Scholar 

  31. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher and J. M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors, Nat. Mater., 2003, 2, 630–638.

    Google Scholar 

  32. S. Y. Ding, G. Rumbles, M. Jones, M. P. Tucker, J. Nedeljkovic, M. N. Simon, J. S. Wall and M. E. Himmel, Bioconjugation of (CdSe)ZnS quantum dots using a genetically engineered multiple polyhistidine tagged cohesin/dockerin protein polymer, Macromol. Mater. Eng., 2004, 289, 622.

    Google Scholar 

  33. C. Bullen and P. Mulvaney, The effects of chemisorption on the luminescence of CdSe quantum dots, Langmuir, 2006, 22, 3007–3013.

    Google Scholar 

  34. J. A. Kloepfer, S. E. Bradforth and J. L. Nadeau, Photophysical properties of biologically compatible CdSe quantum dot structures, J. Phys. Chem. B, 2005, 109, 9996–10003.

    Google Scholar 

  35. B. Noszal, D. Visky and M. Kraszni, Population, acid–base, and redox properties of N-acetylcysteine conformers, J. Med. Chem., 2000, 43, 2176–2182.

    Google Scholar 

  36. S. Jeong, M. Achermann, J. Nanda, S. Lvanov, V. I. Klimov and J. A. Hollingsworth, Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots, J. Am. Chem. Soc., 2005, 127, 10126–10127.

    Google Scholar 

  37. R. G. Pearson, Acids and Bases, Science, 1966, 151, 172–177.

    Google Scholar 

  38. J. M. Berg and H. A. Godwin, Lessons from zinc-binding peptides, Ann. Rev. Biophys. Biomol. Struct., 1997, 26, 357–371.

    Google Scholar 

  39. J. Tormo, R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer, Y. Shoham and T. A. Steitz, Crystal structure of a bacterial family-III cellulose-binding domain: A general mechanism for attachment to cellulose, EMBO J., 1996, 15, 5739–5751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry Rumbles.

Additional information

This paper was published as part of the special issue in honour of David Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, X., Xu, Q., Jones, M. et al. Photophysics of (CdSe)ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins. Photochem Photobiol Sci 6, 1027–1033 (2007). https://doi.org/10.1039/b706471c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b706471c

Navigation