Issue 6, 2011

Rational synthetic design of well-defined Pt(bisethynyl)/Zn(porphyrin) oligomers for potential applications in photonics

Abstract

Well-defined oligomers of 1, 2, 3 and 4 units built upon the very soluble bis-1,15-(1,4-ethynylbenzene)-3,7,13,17-tetramethyl-2,8,12,18-tetrakis(n-hexyl) zinc(II) porphyrin ligand and the trans-bis(tri-n-butylphosphine)platinum(II) linker, with acetylene or trimethylsilane as end groups, has been prepared in the presence of a dichloromethane/diethylamine mixture (1 : 1 v/v) and CuX (X = Cl, I) at room temperature, analogue to a Sonogashira coupling. The new monodisperse organometallic oligomers were characterized by 1H, 31P NMR, UV-visible spectroscopies and MALDI-TOF mass spectrometry. The methyl groups placed at the 3,7,13,17-positions induces the locking of the C6H4 fragment in a perpendicular conformation with respect to the zinc(II) porphyrin chromophore, hence removing conjugation as corroborated by the almost total absence of spectral shift of the Soret and Q-bands upon increasing the number of units. Despite this feature, exciton coupling in the Soret band is noted at both room temperature and 77 K. The photophysical parameters, fluorescence lifetimes and quantum yields are practically constant going from the monomer, dimer and tetramer, and as a function of the monitored fluorescence wavelength, all indicating that the excitonic behavior (excitation energy delocalization) is minimal, which is consistent with the weak exciton coupling constants and the lack of conjugation of the π-system. The synthetic methodology can provide longer well-defined oligomers as the presented products were still very soluble even when the number of unit was 4.

Graphical abstract: Rational synthetic design of well-defined Pt(bisethynyl)/Zn(porphyrin) oligomers for potential applications in photonics

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2010
Accepted
13 Dec 2010
First published
19 Jan 2011

New J. Chem., 2011,35, 1302-1314

Rational synthetic design of well-defined Pt(bisethynyl)/Zn(porphyrin) oligomers for potential applications in photonics

G. Langlois, S. M. Aly, C. P. Gros, J. Barbe and P. D. Harvey, New J. Chem., 2011, 35, 1302 DOI: 10.1039/C0NJ00819B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements