Skip to main content
Log in

A quantum chemical investigation of the electronic structure of thionine

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have examined the electronic and molecular structure of 3,7-diaminophenothiazin-5-ium dye (thionine) in the electronic ground state and in the lowest excited states. The electronic structure was calculated using a combination of density functional theory and multi-reference configuration interaction (DFT/MRCI). Equilibrium geometries were optimized employing (time-dependent) density functional theory (B3LYP functional) combined with the TZVP basis set. Solvent effects were estimated using the COSMO model and micro-hydration with up to five explicit water molecules. Our calculated electronic energies are in good agreement with experimental data. We find the lowest excited singlet and triplet states at the ground state geometry to be of π→π* (S1, S2, T1, T2) and n→π* (S3, T3) character. This order changes when the molecular structure in the electronically excited states is relaxed. Geometry relaxation has almost no effect on the energy of the S1 and T1 states (∼0.02 eV). The relaxation effects on the energies of S2 and T2 are moderate (0.14–0.20 eV). The very small emission energy results in a very low fluorescence rate. While we were not able to locate the energetic minimum of the S3 state, we found a non-planar minimum for the T3 state with an energy which is very close to the energy of the S1 minimum in the gas phase (0.04 eV above). When hydration effects are taken into account, the n→π* states S3 and T3 are strongly blueshifted (0.33 and 0.46 eV), while the π→π* states are only slightly affected (<0.06 eV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Tardivo, A. Del Giglio, C. Santos de Oliveira, D. Santesso Gabrielli, H. Couto Junqueira, D. Batista Tadab, D. Severino, R. de Fatima Turchiello, M. S. Baptista, Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications, Photodiagn. Photodyn. Ther., 2005, 2, 175.

    Article  CAS  Google Scholar 

  2. D. Gabrielli, E. Belisle, D. Severino, A. J. Kowaltowski, M. S. Baptista, Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions, Photochem. Photobiol., 2004, 79, 227.

    Article  CAS  Google Scholar 

  3. T. Ohsaka, K. Tanaka, K. Tokuda, Electrocatalysis of poly(thionine)-modified electrodes for oxidation of reduced nicotinamide adenine dinucleotide, J. Chem. Soc., Chem. Commun., 1993, 222.

    Google Scholar 

  4. K. Tanaka, S. Ikeda, N. Oyama, K. Tokuda, T. Ohsaka, Preparation of Poly(thionine)-Modified Electrode and Its Application to an Electrochemical Detector for the Flow-Injection Analysis of NADH, Anal. Sci., 1993, 9, 783.

    Article  CAS  Google Scholar 

  5. M. G. Neumann, M. R. Rodrigues, The mechanism of the photoinitiation of the polymerization of MMA by the thionine-triethanolamine system, Polymer, 1998, 39, 1657.

    Article  CAS  Google Scholar 

  6. V. Svoboda, M. J. Cooney, C. Rippolz, B. Y. Liaw, In situ characterization of electrochemical polymerization of methylene green on platinum electrodes, J. Electrochem. Soc., 2007, 154, D113.

    Article  CAS  Google Scholar 

  7. M. Wainwright, H. Mohr, W. H. Walker, Phenothiazinium derivatives for pathogen inactivation in blood products, J. Photochem. Photobiol., B, 2007, 86, 45.

    Article  CAS  Google Scholar 

  8. E. M. Tuite, J. M. Kelly, Photochemical reactions of methylene blue and analogues with DNA and other biological substrates, J. Photochem. Photobiol., B, 1993, 21, 103.

    Article  CAS  Google Scholar 

  9. M. Wainwright, D. A. Phoenix, J. Marland, D. R. A. Wareing, F. J. Bolton, A study of photobactericidal activity in the phenothiazinium series, FEMS Immunol. Med. Microbiol., 1997, 19, 75.

    Article  CAS  Google Scholar 

  10. M. Wainwright, The development of phenothiazinium photosensitisers, Photodiagn. Photodyn. Ther., 2005, 2, 263.

    Article  CAS  Google Scholar 

  11. D. A. Phoenix, Z. Sayed, S. Hussain, F. Harris, M. Wainwright, The phototoxicity of phenothiazinium derivatives against Escherichia coli and Staphylococcus aureus, FEMS Immunol. Med. Microbiol., 2003, 39, 17.

    Article  CAS  Google Scholar 

  12. M. Wainwright, D. A. Phoenix, S. L. Laycock, D. R. Wareing, P. A. Wright, Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus, FEMS Microbiol. Lett., 1998, 160, 177.

    Article  CAS  Google Scholar 

  13. J. W. Foley, X. Song, T. N. Demidova, F. Jalil, M. R. Hamblin, Synthesis and Properties of Benzo[a]phenoxazinium Chalcogen Analogues as Novel Broad-Spectrum Antimicrobial Photosensitizers, J. Med. Chem., 2006, 49, 5291.

    Article  CAS  Google Scholar 

  14. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13.

    Article  CAS  Google Scholar 

  15. J. P. Thurston, The chemotherapy of Plasmodium berghei. I. Resistance to drugs, Parasitology, 1953, 43, 246.

    Article  CAS  Google Scholar 

  16. C. Boda, B. Enanga, B. Courtioux, J. C. Breton, B. Bouteille, Trypanocidal activity of methylene blue. Evidence for in vitro efficacy and in vivo failure, Chemotherapy, 2006, 52, 16.

    Article  CAS  Google Scholar 

  17. B. B. Bhowmik, M. Mukhopadhyay, Photoelectrochemical studies of thionine dye in aqueous surfactant solution, J. Photochem. Photobiol., A, 1994, 78, 173.

    Article  CAS  Google Scholar 

  18. C. SenVarma, B. B. Bhowmik, Photoinduced interaction of thionine with phospholipid and cholesterol in artificial membranes, J. Photochem. Photobiol., B, 1991, 8, 295.

    Article  CAS  Google Scholar 

  19. E. Rabinowitch, The photogalvanic effect I: the photochemical properties of the thionine-iron system, J. Chem. Phys., 1940, 8, 551.

    Article  CAS  Google Scholar 

  20. E. Rabinowitch, The photogalvanic effect II: the photogalvanic properties of the thionine-iron system, J. Chem. Phys., 1940, 8, 560.

    Article  CAS  Google Scholar 

  21. K. G. Mathai, E. Rabinowitch, The thionine-ferrous iron reaction in a heterogeneous system, J. Phys. Chem., 1962, 66, 663.

    Article  CAS  Google Scholar 

  22. P. D. Wildes, N. N. Lichtin, M. Z. Hoffman, L. Andrews, H. Linschitz, Anion and solvent effects on the rate of reduction of triplet excited thiazine dyes by ferrous ions, Photochem. Photobiol., 1977, 25, 21.

    Article  CAS  Google Scholar 

  23. L. F. Epstein, F. Karush, E. Rabinowitch, A Spectrophotometric Study of Thionine, J. Opt. Soc. Am., 1941, 31, 77.

    Article  CAS  Google Scholar 

  24. M. Michaelis, M. P. Schubert, S. Granick, Semiquinone Radicals of the Thiazines, J. Am. Chem. Soc., 1940, 62, 204.

    Article  CAS  Google Scholar 

  25. H. Eipper, M. H. Abdel-Kader, H. E. A. Kramer, Thionine triplet relaxation in pyridine: a completely time-resolved forster cycle, J. Photochem., 1985, 283, 433.

    Article  CAS  Google Scholar 

  26. W. C. Lai, N. S. Dixit, R. A. Mackay, Formation of H Aggregates of Thionine Dye in Water, J. Phys. Chem., 1984, 88, 5364.

    Article  CAS  Google Scholar 

  27. G. N. Lewis, O. Goldschmid, T. T. Magel, J. Bigeleisen, Dimeric and Other Forms of Methylene Blue: Absorption and Fluorescence of the Pure Monomer, J. Am. Chem. Soc., 1943, 656, 1150.

    Article  CAS  Google Scholar 

  28. E. Rabinowitch, L. F. Epstein, Polymerization of Dyestuffs in Solution. Thionine and Methylene Blue, J. Am. Chem. Soc., 1941, 63, 69.

    Article  CAS  Google Scholar 

  29. E. G. Kelley, E. G. Miller, Reactions of dyes with cell substances II. The, differential staining of nucleoprotein and mucin by thionine and similar dyes, J. Biol. Chem., 1935, 110, 119.

    Article  CAS  Google Scholar 

  30. H. E. A. Kramer, A. Maute, Sensitized photooxygenation according to type i mechanism (radical mechanism) - part I. flash photolysis experiments, Photochem. Photobiol., 1972, 15, 7.

    Article  CAS  Google Scholar 

  31. V. E. Nicotra, M. F. Mora, R. A. Iglesias, A. M. Baruzzi, Spectroscopic characterization of thionine species in different media, Dyes Pigm., 2008, 762, 315.

    Article  CAS  Google Scholar 

  32. B. Patrick, P. V. Kamat, Photosensitization of Large-Bandgap Semiconductors. Charge Injection from Triplet Excited Thionine into ZnO Colloids, J. Phys. Chem., 1992, 96, 1423.

    Article  CAS  Google Scholar 

  33. M. D. Archer, M. I. C. Ferreira, G. Porter, C. J. Tredwell, Picosecond study of Stern–Volmer quenching of thionine by ferrous ions, Nouv. J. Chim., 1977, 1, 9.

    CAS  Google Scholar 

  34. U. Sommer, H. E. A. Kramer, A theoretical treatment of the electronic states of thionine and related molecules, Photochem. Photobiol., 1971, 13, 387.

    Article  CAS  Google Scholar 

  35. M. G. Neumann, M. J. Tiera, The use of basic dyes as photochemical probes, Química Nova, 1993, 164, 280.

    CAS  Google Scholar 

  36. S. Das, P. V. Kamat, Can H-Aggregates Serve as Light-Harvesting Antennae? Triplet–Triplet Energy Transfer between Excited Aggregates and Monomer Thionine in Aersol-OT Solutions, J. Phys. Chem. B, 1999, 103, 209.

    Article  CAS  Google Scholar 

  37. G. R. Haugen, E. R. Hardwick, Ionic association in aqueous solutions of thionine, J. Phys. Chem., 1963, 67, 725.

    Article  CAS  Google Scholar 

  38. G. R. Haugen, E. R. Hardwick, Ionic association in solutions of thionine. II. Fluorescence and solvent effects, J. Phys. Chem., 1965, 69, 2988.

    Article  CAS  Google Scholar 

  39. U. Steiner, G. Winter, H. E. A. Kramer, Investigation of physical triplet quenching by electron donors, J. Phys. Chem., 1977, 81, 1104.

    Article  CAS  Google Scholar 

  40. M. Nemoto, H. Kokubun, M. Koizumi, Determination of S*-T transition probabilities of some xantene and thiazine dyes on the basis of T-energy transfer. II. Results in the aqueous solution, Bull. Chem. Soc. Jpn., 1969, 42, 2464.

    Article  CAS  Google Scholar 

  41. Y. Usui, Determination of quantum yield of singlet oxygen formation by photosensitization, Chem. Lett., 1973, 743.

    Google Scholar 

  42. H. Fischer, Light flash investigations on the fading out reaction of thionine with allylthiourea, Z. Phys. Chem., 1964, 43, 177.

    Article  CAS  Google Scholar 

  43. E. Vogelmann, H. E. A. Kramer, Photochemical investigations of oxazine, thiazine and selenazine dyes. The reactivity of protolytic triplet forms in electron transfer reactions, Photochem. Photobiol., 1976, 23, 383.

    Article  CAS  Google Scholar 

  44. J. Faure, R. Bonneau, J. Joussot-Dubien, Etude en spectroscopie par eclair des colorants thiaziniques en solution aqueuse, Photochem. Photobiol., 1967, 6, 331.

    Article  CAS  Google Scholar 

  45. R. Bonneau, R. Pottier, O. Bagno, J. Joussot-Dubien, pH dependence of singlet oxygen production in aqueous solutions using thiazine dyes as photosensitizers, Photochem. Photobiol., 1975, 21, 159.

    Article  CAS  Google Scholar 

  46. P. Homem-de-Mello, B. Mennucci, J. Tomasi, A. B. F. da Silva, The effects of solvation in the theoretical spectra of cationic dyes, Theor. Chem. Acc., 2005, 113, 274.

    Article  CAS  Google Scholar 

  47. P. Homem-de-Mello, B. Mennucci, J. Tomasi, A. B. F. da Silva, Cationic dye dimers: a theoretical study, Theor. Chem. Acc., 2007, 118, 315.

    Article  Google Scholar 

  48. S. Grimme, M. Waletzke, A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods, J. Chem. Phys., 1999, 111, 5645.

    Article  CAS  Google Scholar 

  49. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  50. P. A. M. Dirac, Quantum mechanics of many-electron systems, Proc. R. Soc. London, Ser. A, 1929, 123, 714.

    Article  CAS  Google Scholar 

  51. R. Ahlrichs, M. Bär, H.-P. Baron, R. Bauernschmitt, S. Böcker, N. Crawford, P. Deglmann, M. Ehrig, K. Eichkorn, S. Elliott, F. Furche, F. Haase, M. Häser, C. Hättig, A. Hellweg, H. Horn, C. Huber, U. Huniar, M. Kattannek, A. Köhn, C. Kölmel, M. Kollwitz, K. May, P. Nava, C. Ochsenfeld, H. Öhm, H. Patzelt, D. Rappoport, O. Rubner, A. Schäfer, U. Schneider, M. Sierka, O. Treutler, B. Unterreiner, M. v. Arnim, F. Weigend, P. Weis and H. Weiss, Turbomole (vers. 6.1), Universität Karlsruhe, 2009.

    Google Scholar 

  52. C. Marian, D. Nolting, R. Weinkauf, The electronic spectrum of protonated adenine: Theory and experiment, Phys. Chem. Chem. Phys., 2005, 7, 3306.

    Article  CAS  Google Scholar 

  53. S. Salzmann, C. M. Marian, Effects of protonation and deprotonation on the excitation energies of lumiflavin, Chem. Phys. Lett., 2008, 463, 400.

    Article  CAS  Google Scholar 

  54. D. Jacquemin, V. Wathelet, E. A. Perpète, C. Adamo, Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules, J. Chem. Theory Comput., 2009, 5, 2420.

    Article  CAS  Google Scholar 

  55. R. Bauernschmitt, R. Ahlrichs, Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory, Chem. Phys. Lett., 1996, 256, 454.

    Article  CAS  Google Scholar 

  56. A. P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, J. Phys. Chem., 1996, 100, 16502.

    Article  CAS  Google Scholar 

  57. A. Schäfer, C. Huber, R. Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys., 1994, 100, 5829.

    Article  Google Scholar 

  58. C. M. Marian, The guanine tautomer puzzle: quantum chemical investigation of ground and excited states, J. Phys. Chem. A, 2007, 1118, 1545.

    Article  CAS  Google Scholar 

  59. M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, W. Thiel, Benchmarks for electronically excited states: CASPT2, CC2, CCSD and CC3, J. Chem. Phys., 2008, 128, 134110.

    Article  Google Scholar 

  60. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  61. A. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys., 1993, 98, 1372.

    Article  CAS  Google Scholar 

  62. O. Christiansen, H. Koch, P. Jørgensen, The second-order approximate coupled cluster singles and doubles model CC2, Chem. Phys. Lett., 1995, 243, 409.

    Article  CAS  Google Scholar 

  63. O. Vahtras, J. Almlöf, M. W. Feyereisen, Integral approximations for LCAO-SCF calculations, Chem. Phys. Lett., 1993, 213, 514.

    Article  CAS  Google Scholar 

  64. A. Klamt, G. Schürmann, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2, 1993, 799.

    Google Scholar 

  65. A. Schäfer, A. Klamt, D. Sattel, J. C. W. Lohrenz, F. Eckert, COSMO Implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems, Phys. Chem. Chem. Phys., 2000, 2, 2187.

    Article  Google Scholar 

  66. C. Reichardt, in Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 1990.

    Google Scholar 

  67. S. Salzmann, M. Kleinschmidt, J. Tatchen, R. Weinkauf, C. M. Marian, Excited states of thiophene: ring opening as deactivation mechanism, Phys. Chem. Chem. Phys., 2008, 10, 380.

    Article  CAS  Google Scholar 

  68. H. E. Marr, J. M. Stewart, The crystal structure of methylene blue pentahydrate, Acta Cryst., 1973, B29, 847.

    Article  Google Scholar 

  69. M. R. Silva-Junior, M. Schreiber, S. P. A. Sauer, W. Thiel, Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction, J. Chem. Phys., 2008, 129, 104103.

    Article  Google Scholar 

  70. H. E. A. Kramer, M. Hafner, M. Zügel, Bestimmung der Energie des Thionintripletts durch Triplett-Triplett-Energieübertragung, Z. Phys. Chem., 1969, 65, 276.

    Article  CAS  Google Scholar 

  71. H. E. A. Kramer, Bestimmung der Energie des Thionintripletts durch Triplett-Triplett-Energieübertragung, Z. Phys. Chem., 1969, 66, 73.

    Article  CAS  Google Scholar 

  72. S. Salzmann, J. Tatchen, C. M. Marian, The photophysics of flavins: What makes the difference between gas phase and aqueous solution?, J. Photochem. Photobiol., A, 2008, 198, 221.

    Article  CAS  Google Scholar 

  73. J. Tatchen, C. M. Marian, Vibronic absorption, fluorescence, and phosphorescence spectra of psoralen: a quantum chemical investigation, Phys. Chem. Chem. Phys., 2006, 8, 2133.

    Article  CAS  Google Scholar 

  74. K. Tomić, J. Tatchen, C. M. Marian, Quantum chemical investigation of the electronic spectra of the keto, enol, and keto-imine tautomers of cytosine, J. Phys. Chem. A, 2005, 109, 8410.

    Article  Google Scholar 

  75. S. K. Lower, M. A. El-Sayed, The triplet state and molecular electronic processes in organic molecules, Chem. Rev., 1966, 66, 199.

    Article  CAS  Google Scholar 

  76. J. Tatchen, N. Gilka, C. M. Marian, Intersystem crossing driven by vibronic spin–orbit coupling: a case study on psoralen, Phys. Chem. Chem. Phys., 2007, 9, 5209.

    Article  CAS  Google Scholar 

  77. A. Dias Quintão, K. Coutinho, S. Canuto, Theoretical Study of the Hydrogen Bond Interaction Between Methylene Blue and Water and Possible Role on Energy Transfer for Photodynamics, Int. J. Quantum Chem., 2002, 90, 634.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martha C. Daza or Markus Doerr.

Additional information

Electronic supplementary information (ESI) available: DFT/MRCI energies of the low-lying states along a linearly-interpolated path between the S0 and S1 geometries (Fig. 1); frontier Kohn-Sham BHLYP/ TZVP molecular orbitals computed at the T3 (n→π*) state minimum (Fig. 2); selected geometrical parameters of the thionine ground state calculated with the B3LYP functional and the TZVP, TZVPP and TZVP+R basis sets (Table 1); vertical singlet and triplet excitation energies ΔE (eV) of thionine calculated using the TZVP+R and the TZVP basis sets (Table 2); DFT/MRCI energies (ΔE), oscillator strengths (f(L)) and dominant contributions (DC) for each of the linearly interpolated geometries between the S1 and the S2 minima calculated at the DFT/MRCI/ TZVP level (Table 3); geometries and vibrational frequencies of the ground and excited states are provided as molden files: S0.molden, S1.molden, S2.molden, T1.molden, T2.molden and T3.molden. See DOI: 10.1039/c1pp05267e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Serrano, A., Daza, M.C., Doerr, M. et al. A quantum chemical investigation of the electronic structure of thionine. Photochem Photobiol Sci 11, 397–408 (2012). https://doi.org/10.1039/c1pp05267e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05267e

Navigation