Issue 43, 2012

Diblock fluoroacrylatecopolymers from two initiators: synthesis, self-assembly and surface properties

Abstract

Diblock fluoroacrylate copolymers poly(methyl methacrylate) (PMMA)-b-poly(dodecafluoroheptyl methacrylate) (PMMA-b-PDFHM) for coating materials are synthesized via atom transfer radical polymerization (ATRP) by two different initiators, a brominated initiator end group terminated by 1H,1H,2H,2H-heptadecafluoro (F–Br) and the conventional initiator ethyl 2-bromoisobutyrate (EBiB). The copolymer structures are characterized by 1H NMR, 19F NMR and GPC analyses. The influence of the two initiators on the self-assembly behavior and the surface properties of PMMA-b-PDFHM films are explored. Because of the divergent solubility of the segments in chloroform (CHCl3), tetrahydrofuran (THF) and trifluorotoluene (TFT) solutions, the self-assembly of PMMA-b-PDFHM in CHCl3, THF and TFT was investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Accordingly, the properties of PMMA-b-PDFHM films cast from CHCl3, THF and TFT solutions were compared for their surface wettability, surface free energy, surface elemental composition, surface morphology and roughness, and surface water adsorption, through analysis of static contact angle (SCA), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and quartz crystal microbalance with dissipation (QCM-D). It is found that the copolymers F-PMMA-b-PDFHM using F–Br initiator and E-PMMA-b-PDFHM using EBIB initiator, reveal both unimers (7–9 nm) and micelles (220–360 nm) in THF and CHCl3 solutions, which are recognized by TEM as dichroic half-spherical or core–shell particles, but occur mainly as unimers (5–9 nm) in TFT solution, which is favorable for obtaining films with low surface free energies. F-PMMA-b-PDFHM films show lower surface free energy (17.1–17.7 mN m−1) than E-PMMA-b-PDFHM films (17.9–22.9 mN m−1) in each solvent. The surface morphology and roughness determined are strongly controlled by the cast solutions. F-PMMA-b-PDFHM films exhibit a low wettability and high stable surface due to a well-ordered fluorocarbon surface provided by both PDFHM and F–Br groups, and therefore can be developed into a high-performance coating material.

Graphical abstract: Diblock fluoroacrylate copolymers from two initiators: synthesis, self-assembly and surface properties

Article information

Article type
Paper
Submitted
10 Aug 2012
Accepted
13 Sep 2012
First published
13 Sep 2012

J. Mater. Chem., 2012,22, 23078-23090

Diblock fluoroacrylate copolymers from two initiators: synthesis, self-assembly and surface properties

X. Dong, L. He, N. Wang, J. Liang, M. Niu and X. Zhao, J. Mater. Chem., 2012, 22, 23078 DOI: 10.1039/C2JM35400D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements