Skip to main content

Advertisement

Log in

Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don’t generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ciamician, The photochemistry of the future, Science 1912, 36, 385–394.

    Article  CAS  PubMed  Google Scholar 

  2. G. Ciamician, Actions chimiques de la lumière, Bull. Soc. Chim. Fr. 1908, 3–4, i–xxvii.

    Google Scholar 

  3. A. Albini and M. Fagnoni, 1908: Giacomo Ciamician and the concept of green chemistry, ChemSusChem 2008, 1, 63–66.

    Article  CAS  PubMed  Google Scholar 

  4. A. Albini and M. Fagnoni, Green chemistry and photochemistry were born at the same time, Green Chem. 2004, 6, 1–6.

    Article  CAS  Google Scholar 

  5. P. T. Anastas and M. M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res. 2002, 35, 686–693.

    Article  CAS  PubMed  Google Scholar 

  6. See for example: M. Eissen and J. O. Metzger, Environmental performance metrics for daily use in synthetic chemistry, Chem.–Eur. J. 2002, 8, 3580–3585.

    Article  CAS  PubMed  Google Scholar 

  7. A. Hugo, C. Ciumei, A. Buxton and E. N. Pistikopoulos, Environmental impact minimization through material substitution: a multi-objective optimization approach, Green Chem. 2004, 6, 407–417.

    Article  CAS  Google Scholar 

  8. S. M. Kaufman, N. Krishnan and N. J. Themlis, A screening life cycle metric to benchmark the environmental sustainability of waste management systems, Environ. Sci. Technol. 2010, 44, 5949–5955.

    Article  CAS  PubMed  Google Scholar 

  9. S. Protti, D. Dondi, M. Fagnoni and A. Albini, Photochemistry in synthesis: where, when, and why, Pure Appl. Chem. 2007, 79, 1929–1938.

    Article  CAS  Google Scholar 

  10. S. Protti, D. Dondi, M. Fagnoni and A. Albini, Assessing photochemistry as a green synthetic method. Carbon–carbon bond forming reactions, Green Chem. 2009, 11, 239–249.

    Article  CAS  Google Scholar 

  11. A. Schönberg, Präparative Organische Photochemie, Springer-Verlag, Berlin, 1958.

    Book  Google Scholar 

  12. P. Esser, B. Pohlmann and H.-D. Scharf, The photochemical synthesis of fine chemicals with sunlight, Angew. Chem., Int. Ed. Engl. 1994, 33, 2009–2023.

    Article  Google Scholar 

  13. M. Oelgemöller, C. Jung and J. Mattay, Green photochemistry: production of fine chemicals with sunlight, Pure Appl. Chem. 2007, 79, 1939–1947.

    Article  CAS  Google Scholar 

  14. S. Protti and M. Fagnoni, The sunny side of chemistry: green synthesis by solar light, Photochem. Photobiol. Sci. 2009, 8, 1499–1516.

    Article  CAS  PubMed  Google Scholar 

  15. H. D. Roth, The beginnings of organic photochemistry, Angew. Chem., Int. Ed. Engl. 1989, 28, 1193–1207.

    Article  Google Scholar 

  16. H. D. Roth, A tribute to Stanislao Cannizzaro: chemical informationist and photochemist, Photochem. Photobiol. Sci. 2011, 10, 1849–1853.

    Article  CAS  PubMed  Google Scholar 

  17. E. E. Coyle and, M. Oelgemöller, Micro-photochemistry: photochemistry in microstructured reactors. The new photochemistry of the future?, Photochem. Photobiol. Sci. 2008, 7, 1313–1322.

    Article  CAS  PubMed  Google Scholar 

  18. M. Oelgemöller and O. Shvydkiv, Recent advances in microflow photochemistry, Molecules 2011, 16, 7522–7550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. T. Fukuyama, M. T. Rahman, M. Sato and I. Ryu, Adventures in inner space: microflow systems for practical organic synthesis, Synlett 2008 151–163.

    Google Scholar 

  20. Y. Matsushita, T. Ichimura, N. Ohba, S. Kumada, K. Sakeda, T. Suzuki and H. Tanibata, Recent progress on photoreactions in microreactors, Pure Appl. Chem. 2007, 79, 1959–1968.

    Article  CAS  Google Scholar 

  21. J. Wegner, S. Ceylan and A. Kirschning, Ten key issues in modern flow chemistry, Chem. Commun. 2011, 47, 4583–4592.

    Article  CAS  Google Scholar 

  22. J. Wegner, S. Ceylan and A. Kirschning, Flow chemistry–a key enabling technology for (multistep) organic synthesis, Adv. Synth. Catal. 2012, 354, 17–57.

    Article  CAS  Google Scholar 

  23. . For impressive examples of photochemical reactions in continuous flow reactors see: F. Lévesque and P. H. Seeberger, Continuous-flow synthesis of the anti-malaria drug artemisinin, Angew. Chem., Int. Ed. 2012, 51, 1706–1709.

    Article  CAS  Google Scholar 

  24. M. D. Lainchbury, M. I. Medley, P. M. Taylor, P. Hirst, W. Dohle and K. I. Booker-Milburn, A protecting group free synthesis of (±)-neostenine via the [5 + 2] photocycloaddition of maleimides, J. Org. Chem. 2008, 73, 6497–6505.

    Article  CAS  PubMed  Google Scholar 

  25. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito, 2010.

    Google Scholar 

  26. P. Klán and J. Wirz, Photochemistry of Organic Compounds, Wiley, Chichester, 2009.

    Book  Google Scholar 

  27. N. J. Turro, Geometric and topological thinking in organic chemistry, Angew. Chem., Int. Ed. Engl. 1986, 25, 882–892.

    Article  Google Scholar 

  28. M. Olivucci and F. Santoro, Chemical selectivity through control of excited-state dynamics, Angew. Chem., Int. Ed. 2008, 47, 6322–6325.

    Article  CAS  Google Scholar 

  29. I. Schapiro, F. Melaccio, E. N. Laricheva and M. Olivucci, Using the computer to understand the chemistry of conical intersections, Photochem. Photobiol. Sci. 2011, 10, 867–886.

    Article  CAS  PubMed  Google Scholar 

  30. M. Klessinger and J. Michl, Lichtabsorption und Photochemie organischer Moleküle, VCH, Weinheim, 1990.

    Google Scholar 

  31. N. J. Turro, Fun with photons, reactive intermediates, and friends. Skating on the edge of the paradigms of physical organic chemistry, organic supramolecular photochemistry, and spin chemistry, J. Org. Chem. 2011, 76, 9863–9890.

    Article  CAS  PubMed  Google Scholar 

  32. For some special features see: M. Abe, J. Ye and M. Mishima, The chemistry of located 1,3-diradicals (biradicals): from putative intermediates to persistent species and unusual molecules with a p-single bonded character, Chem. Soc. Rev. 2012, 41, 3808–3820.

    Article  CAS  PubMed  Google Scholar 

  33. K. Somekawa, Y. Odo and T. Shimo, Molecular simulations of photoaddition selectivity and chirality in challenging photochemical reactions, Bull. Chem. Soc. Jpn. 2009, 82, 1447–1469.

    Article  CAS  Google Scholar 

  34. A. Savitsky and K. Möbius, Photochemical reactions and photoinduced electron-transfer processes in liquids, frosen solutions, and proteins as studied by multifrequency time-resolved EPR spectroscopy, Helv. Chim. Acta 2006, 89, 2544–2589.

    Article  CAS  Google Scholar 

  35. A. G. Griesbeck, Spin-selectivity in photochemistry: a tool for organic synthesis, Synlett 2003 451–472.

    Google Scholar 

  36. S. Tero-Kubota, A. Katsuki and Y. Kobori, Spin–orbit coupling induced electron spin polarization in photoinduced electron transfer reaction, J. Photochem. Photobiol., C 2001, 2, 17–33.

    Article  CAS  Google Scholar 

  37. N. Hoffmann, Photochemical reactions as key steps in organic synthesis, Chem. Rev. 2008, 108, 1052–1103.

    Article  CAS  PubMed  Google Scholar 

  38. N. Hoffmann, J.-C. Gramain and H. Bouas-Laurent, Photochimie en synthèse organique, Chim. Actual. 2008, 317, 6–13.

    CAS  Google Scholar 

  39. T. Bach and J. P. Hehn, Photochemical reactions as key steps in natural product synthesis, Angew. Chem., Int. Ed. 2011, 50, 1000–1045.

    Article  CAS  Google Scholar 

  40. C.-L. Ciana and C. G. Bochet, Clean and easy photochemistry, Chimia 2007, 61, 650–654.

    Article  CAS  Google Scholar 

  41. CRC Handbook of Organic Photochemistry and Photobiology, 2nd Edition, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2004.

    Google Scholar 

  42. Handbook of Synthetic Photochemistry, ed. A. Albini and M. Fagnoni, Wiley-VCH, Weinheim, 2010.

    Google Scholar 

  43. S. Protti, S. Manzini, M. Fagnoni and A. Albini, The contribution of photochemistry to green chemistry, in Eco-Friendly Synthesis of Fine Chemicals, ed. R. Ballini, The Royal Society of Chemistry, Cambridge, 2009, pp. 80–111.

    Chapter  Google Scholar 

  44. K. Mizuno, H. Ikeda and H. Maeda, Environmentally harmonious organic photochemical reactions, in Environmentally Harmonious Chemistry for the 21st Century, ed. M. Anpo and K. Mizuno, Nova Science Publishers, New York, 2010, pp. 89–136.

    Google Scholar 

  45. A. Schönberg, Preparative Organic Photochemistry, Springer-Verlag, Berlin, 1968.

    Book  Google Scholar 

  46. Photochemical Key Steps in Organic Synthesis, ed. J. Mattay and A. Griesbeck, VCH, Weinheim, 1994.

    Google Scholar 

  47. D. Wöhrle, M. W. Tausch and W.-D. Stohrer, Photochemie, Wiley-VCH, Weinheim, 1998.

    Book  Google Scholar 

  48. I. Ninomiya and T. Naito, Photochemical Synthesis, Academic Press, London, 1989.

    Google Scholar 

  49. B. D. Hook, W. Dohle, P. R. Hirst, M. Pickworth, M. B. Berry and K. I. Booker-Milburn, A practical flow reactor for continuous organic photochemistry, J. Org. Chem. 2005, 70, 7558–7564.

    Article  CAS  PubMed  Google Scholar 

  50. J. A. Porco Jr. and S. L. Schreiber, The Paterno–Büchi reaction, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and L. A. Paquette, Pergamon Press, Oxford, 1991, vol.5, pp. 151–192.

    Article  Google Scholar 

  51. A. G. Griesbeck, Photocycloadditions of alkenes to excited carbonyls, in Synthetic Organic Photochemistry, ed. A. G. Griesbeck and J. Mattay, Marcel Dekker, New York, 2005, pp. 89–139.

    Google Scholar 

  52. M. Abe, Formation of a four-membered ring: oxetanes, in Handbook of Synthetic Photochemistry, ed. A. Albini and M. Fagnoni, Wiley-VCH, Weinheim, 2010, pp. 217–239.

    Google Scholar 

  53. T. Bach, Stereoselective intermolecular [2 + 2]-photocycloaddition reactions and their application in synthesis, Synthesis 1998 683–703.

    Google Scholar 

  54. D. Becker and N. Haddad, Application of intramolecular 2 + 2–phorocycloadditions in organic synthesis, Org. Photochem. 1989, 10, 1–162.

    CAS  Google Scholar 

  55. M. T. Crimmins and T. L. Reinhold, Enone olefin [2 + 2] photocycloaddition, Org. React. 1993, 44, 297–588.

    CAS  Google Scholar 

  56. J. D. Winkler, C. M. Bowen and F. Liotta, [2 + 2] Photocycloaddition fragmentation strategies for the synthesis of natural and unnatural products, Chem. Rev. 1995, 95, 2003–2020.

    Article  CAS  Google Scholar 

  57. F. B. Mallory and C. W. Mallory, Photocyclization of stilbenes and related molecules, Org. React. 1984, 30, 1–456.

    CAS  Google Scholar 

  58. A. Gilbert, Cyclization of stilbenes and its derivatives, in Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd edn, 2004, pp.33/1–33/11.

    Google Scholar 

  59. N. Hoffmann, Synthesis of heterocycles by photocyclization of arenes, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd edn, 2004, pp.34/1–34/20.

    Google Scholar 

  60. C. M. Beaudry, J. P. Malerich and D. Trauner, Biosynthetic and biomimetic electrocyclizations, Chem. Rev. 2005, 105, 4757–4778.

    Article  CAS  PubMed  Google Scholar 

  61. M. J. Ralph, Organic photochemistry in the construction of heterocyclic compounds, Curr. Org. Chem. 2011, 15, 2658–2672.

    Article  CAS  Google Scholar 

  62. H. E. Zimmerman and D. Armesto, Synthetic aspects of the di-p-methane rearrangement, Chem. Rev. 1996, 96, 3065–3112.

    Article  CAS  PubMed  Google Scholar 

  63. M. Demuth, Oxa-di-p-methane photoisomerization, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and L. A. Paquette, Pergamon Press, Oxford, 1991,vol. 5, pp. 215–237.

    Article  Google Scholar 

  64. V. J. Rao and A. G. Griesbeck, Oxa-di-p-methane rearrangement, in Synthetic Organic Photochemistry, ed. A. G. Griesbeck and J. Mattay, Marcel Dekker, New York, 2005, pp. 189–210.

    Google Scholar 

  65. Themed Issue: Photoremovable protecting groups–development and applications, Photochem. Photobiol. Sci., 2012, 11(3) Dynamic Studies in Biology, ed. M. Goeldner and R. Givens, Wiley-VCH, Weinheim, 2005.

    Google Scholar 

  66. R. S. Givens, P. G. Conrad II, A. L. Yousef and J.-I. Lee, Photoremovable protecting groups, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd edn, 2004, pp.69/1–34/46.

    Google Scholar 

  67. C. G. Bochet and A. Blanc, Photolabile protecting groups in organic synthesis, in Handbook of Synthetic Photochemistry, ed. A. Albini and M. Fagnoni, Wiley-VCH, Weinheim, 2010

    Google Scholar 

  68. C. G. Bochet, Photolabile protecting groups and linkers, J. Chem. Soc., Perkin Trans. 1 2002 125–142.

    Google Scholar 

  69. A. P. Pelliccioli and J. Wirz, Photoremovable protecting groups: reactions mechanisms and applications, Photochem. Photobiol. Sci. 2002, 1, 441–458.

    Article  PubMed  Google Scholar 

  70. V. N. R. Pillai, Photolytic deprotection and activation of functional groups, in Organic Photochemistry, ed. A. Pdawa, Marcel Dekker, New York, 1987,vol. 9,.

  71. G. Mayer and A. Heckel, Biologically active molecules with a “light switch”, Angew. Chem., Int. Ed. 2006, 45, 4900–4921.

    Article  CAS  Google Scholar 

  72. A. Herrmann, Controlled release of volatiles under mild reaction conditions: from nature to everyday products, Angew. Chem., Int. Ed. 2007, 46, 5836–5863.

    Article  CAS  Google Scholar 

  73. P. J. Kocienski, Protecting Groups, Thieme, Stuttgart, 3rd edn, 2005.

    Google Scholar 

  74. V. N. R. Pillai, Synthesis 1980 1–26.

    Google Scholar 

  75. C. G. Bochet, Chromatic orthogonality in organic synthesis, Synlett 2004 2268–2274.

    Google Scholar 

  76. N. Hoffmann, Homogeneous photocatalytic reactions with organometallic and coordination compounds–perspectives for sustainable chemistry, ChemSusChem 2012, 5, 352–371.

    Article  CAS  PubMed  Google Scholar 

  77. D. Ravelli and M. Fagnoni, Dyes as visible light photoredox organocatalysts, ChemCatChem 2012, 4, 169–171.

    Article  CAS  Google Scholar 

  78. F. Teplý, Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots, Collect. Czech. Chem. Commun. 2011, 76, 859–917.

    Article  CAS  Google Scholar 

  79. J. M. R. Narayanam and C. R. J. Stephenson, Visible light photoredox catalysis: applications in organic synthesis, Chem. Soc. Rev. 2011, 40, 102–113.

    Article  CAS  PubMed  Google Scholar 

  80. T. P. Yoon, M. A. Ischay and J. Du, Visible light photocatalysis as a greener approach to photochemical synthesis, Nat. Chem. 2010, 2, 527–532.

    Article  CAS  PubMed  Google Scholar 

  81. R. E. Galian, J. Pérez-Prieto, Catalytic processes activated by light, Energy Environ. Sci. 2010, 3, 1488–1498.

    Article  CAS  Google Scholar 

  82. A. J. B. Watson and D. W. C. MacMillan, Enantioselective organocatalysis involving iminium, enamine, SOMO, and photoredox activation, in Catalytic Asymmetric Synthesis, ed. I. Ojima, Wiley, Hoboken, 3rd edn, 2010, pp. 39–57.

    Google Scholar 

  83. K. Zeitler, Photoredox catalysis with visible light, Angew. Chem., Int. Ed. 2009, 48, 9785–9789.

    Article  CAS  Google Scholar 

  84. N. Hoffmann, Efficient photochemical electron transfer sensitization of homogeneous organic reactions, J. Photochem. Photobiol., C 2008, 9, 43–60.

    Article  CAS  Google Scholar 

  85. M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Photocatalysis for the formation of the C–C bond, Chem. Rev. 2007, 107, 2725–2756.

    Article  CAS  PubMed  Google Scholar 

  86. G. Pandey and S. R. Gadre, Sequential two electron photooxidation of t-amines: generation of a regiospecific iminium cation and its application in organic synthesis, ARKIVOC 2003, iii, 45–54.

    Article  Google Scholar 

  87. G. Pandey, Synthetic perspectives of photoinduced electron transfer generated amine radical cations, Synlett 1992 546–552.

    Google Scholar 

  88. S. P. Roche, J. A. Porco, Jr., Dearomatization strategies in the synthesis of complex natural products, Angew. Chem., Int. Ed. 2011, 50, 4068–4093.

    Article  CAS  Google Scholar 

  89. L. Pouységu, D. Deffieux and S. Quideau, Hypervalent iodine-mediated phenol dearomatization in natural product synthesis, Tetrahedron 2010, 66, 2235–2261.

    Article  CAS  Google Scholar 

  90. D. Magdziak, S. J. Meek and T. R. R. Pettus, Cyclohexadienone ketals and quinols: four building blocks potentially useful for enantioselective synthesis, Chem. Rev. 2004, 104, 1383–1430.

    Article  CAS  PubMed  Google Scholar 

  91. A. R. Pape, K. P. Kaliappan, E. Peter Kündig, Transition-metal-mediated dearomatization reactions, Chem. Rev. 2000, 100, 2917–2940.

    Article  CAS  PubMed  Google Scholar 

  92. M. D. Burke and S. L. Schreiber, A planning strategy for diversity-orientated synthesis, Angew. Chem., Int. Ed. 2004, 43, 46–58.

    Article  CAS  Google Scholar 

  93. D. De Keukeleire and S.-L. He, Photochemical strategies for the construction of polycyclic molecules, Chem. Rev. 1993, 93, 359–380.

    Article  Google Scholar 

  94. N. Hoffmann, Ortho-, meta- and para-photocycloaddition of arenes, in Synthetic Organic Photochemistry, ed. A. G. Griesbeck and J. Mattay, Marcel Dekker, New York, 2005, pp. 529–552.

    Google Scholar 

  95. J. Mattay, Photochemistry of arenes–reloaded, Angew. Chem., Int. Ed. 2007, 46, 663–665.

    Article  CAS  Google Scholar 

  96. U. Streit and C. G. Bochet, The arene–alkene photocycloaddition, Beilstein J. Org. Chem. 2011, 7, 525–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. N. Hoffmann, Photochemical cycloaddition between benzene derivatives and alkenes, Synthesis 2004 481–495.

    Google Scholar 

  98. J. Cornelisse, The meta photocycloaddition of arenes to alkenes, Chem. Rev. 1993, 93, 615–669.

    Article  CAS  Google Scholar 

  99. P. A. Wender, R. Ternansky, M. de Long, S. Singh, A. Olivero and K. Rice, Arene–alkene cycloadditions and organic synthesis, Pure Appl. Chem. 1990, 62, 1597–1602.

    Article  CAS  Google Scholar 

  100. P. A. Wender, L. Siggel and J. M. Nuss, [3 + 2] and [5 + 2] Arene-alkene photocycloadditions, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and L. A. Paquette, Pergamon Press, Oxford, 1991,vol. 5, pp. 645–673.

    Article  Google Scholar 

  101. D. Chappell and A. T. Russell, From a-cedrene to crinipellin B and onward: 25 years of the alkene–arene meta-photocycloaddition reaction in natural product synthesis, Org. Biomol. Chem. 2006, 4, 4409–4430.

    Article  CAS  PubMed  Google Scholar 

  102. J. Cornelisse and R. de Haan, Ortho photocycloaddition of alkenes and alkynes to the benzene ring, in Molecular and Supramolecular Photochemistry, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York, 2001,vol. 8, pp. 1–126.

    CAS  Google Scholar 

  103. K. E. Wilzbach and L. Kaplan, A photochemical 1,3 cycloaddition of olefins to benzene, J. Am. Chem. Soc. 1966, 88, 2066–2067.

    Article  CAS  Google Scholar 

  104. D. Bryce-Smith, A. Gilbert and B. H. Orger, Photochemical 1,3-cycloaddition of olefins to aromatic compounds, Chem. Commun. 1966 512–514.

    Google Scholar 

  105. S. Clifford, M. J. Bearpark, F. Bernardi, M. Olivucci, M. A. Robb and B. R. Smith, Conical intersection pathways in the photocycloaddition of ethene and benzene: a CASSCF study with MMVB dynamics, J. Am. Chem. Soc. 1996, 118, 7353–7360.

    Article  CAS  Google Scholar 

  106. J. Mattay, J. Runsink, J. Gersdorf, T. Rumbach and C. Ly, 53 Selectivity and charge transfer in photoreactions of a,a,a,-trifluorotoluene with olefins, Helv. Chim. Acta 1986, 69, 442–455.

    Article  CAS  Google Scholar 

  107. J. Mattay, J. Runsink, J. A. Piccirilli, A. W. H. Jans and J. Cornelisse, Photochemical cycloaddition of 1,3-dioxoles to anisol, J. Chem. Soc., Perkin Trans. 1 1987 15–20.

    Google Scholar 

  108. P. A. Wender and G. B. Dreyer, Synthetic studies on arene–olefin cycloaddition. II. Total synthesis of (±)-isocumene, Tetrahedron 1981, 37, 4445–4450.

    Article  CAS  Google Scholar 

  109. P. A. Wender and R. J. Ternansky, Synthetic studies on arene–olefin cycloaddition. VII. A three-step total synthesis of (+/-)-silphinene, Tetrahedron Lett. 1985, 26, 2625–2628.

    Article  CAS  Google Scholar 

  110. R. Keese, Carbon flatland: planar tetracoordinate carbon and fenestranes, Chem. Rev. 2006, 106, 4787–4808.

    Article  CAS  PubMed  Google Scholar 

  111. T. Gaich and J. Mulzer, The synthesis of (-)-penifulvin A, an insecticide with a dioxafenestrane skeleton, J. Am. Chem. Soc. 2009, 131, 452–453.

    Article  CAS  PubMed  Google Scholar 

  112. R. W. Hoffmann, Allylic 1,3-strain as a controlling factor in stereoselective transformations, Chem. Rev. 1989, 89, 1841–1860.

    Article  CAS  Google Scholar 

  113. T. Gaich and J. Mulzer, From silphinenes to penivulvins: a biomimetic approach to penivulvins B and C, Org. Lett. 2010, 12, 272–275.

    Article  CAS  PubMed  Google Scholar 

  114. See for example: H. M. Barentsen, E. G. Talman, D. P. Piet and J. Cornelisse, Intramolecular meta photocycloaddition of conformationally restrained 5-phenylpent-1-enes. Part I: bichromophoric cyclohexane derivatives, Tetrahedron 1995, 51, 7469–7494.

    Article  CAS  Google Scholar 

  115. J. L. Timmermans, M. W. Wamelink, G. Lodder and J. Cornelisse, Diastereoselective intramolecular meta photocycloaddition of side-chain-substituted 5-(2-methoxyphenyl)pent-1-enes, Eur. J. Org. Chem. 1999 463–470.

    Google Scholar 

  116. C. S. Penkett, R. O. Sims, R. French, L. Dray, S. J. Roome and P. B. Hitchcock, Palladium catalyzed arylation reactions of meta photocycloadducts, Chem. Commun. 2004 1932–1933.

    Google Scholar 

  117. R. C. Morales, A. Lopez-Mosquera, N. Roper, P. R. Jenkins, J. Fawcett, M. D. Gacía, Diastereocontrol in the intramolecular meta-photocycloaddition of arenes and olefins, Photochem. Photobiol. Sci. 2006, 5, 649–652.

    Article  CAS  PubMed  Google Scholar 

  118. C. S. Penkett, J. A. Woolford, T. W. Read and R. J. Kahan, Investing the arenyl-diene double [3 + 2] photocycloaddition reaction, J. Org. Chem. 2011, 76, 1295–1304.

    Article  CAS  PubMed  Google Scholar 

  119. C. S. Penkett, J. A. Woolford, I. J. Day and M. P. Coles, The double [3 + 2] photocycloaddition reaction, J. Am. Chem. Soc. 2010, 132, 4–5.

    Article  CAS  PubMed  Google Scholar 

  120. J. W. Boyd, N. Greaves, J. Kettle, A. T. Russell and J. W. Steed, Alkene–arene meta photocycloaddition with a four-carbon-atom tether: efficient approach toward the polycyclic ring systems of aphidicolin and stemodinone, Angew. Chem., Int. Ed. 2005, 44, 850–852.

    Article  CAS  Google Scholar 

  121. Q. Wang and C. Chen, An approach to the core skeleton of lancifordilactone F, Org. Lett. 2008, 10, 1223–1226.

    Article  CAS  PubMed  Google Scholar 

  122. P. J. Wagner, Photoinduced ortho [2 + 2] cycloaddition of double bonds to triplet benzene, Acc. Chem. Res. 2001, 34, 1–8.

    Article  CAS  PubMed  Google Scholar 

  123. D. E. Ayer and G. H. Buchi, 1-Cyanobicyclo[4.2.2]octa-2,4-dienes and their Synthesis, US Patent 2805242, 1957.

    Google Scholar 

  124. J. G. Atkinson, D. E. Ayer, G. Büchi and E. W. Robb, Photochemical reactions. XII. addition reactions of olefins and acetylenes with benzonitril, J. Am. Chem. Soc. 1963, 85, 2257–2263.

    Article  CAS  Google Scholar 

  125. K. Vízvárdi, S. Toppet, G. J. Hoornaert, D. De Keukeleire, P. Bakó, E. Van der Eycken, Intramolecular orthometa photocycloadditions of 4-phenoxybut-1-enes substituted in the arene residue with carbomethoxy, carbomethoxymethyl, and 2-carbomethoxyethyl groups, J. Photochem. Photobiol., A 2000, 133, 135–146.

    Article  Google Scholar 

  126. D. De Keukeleire, The synthetic potential of the intramolecular meta-photocycloaddition in arene–alkene bichromophoric systems containing oxygen in the tether, Aldrichimica Acta 1994, 27, 59–69.

    Google Scholar 

  127. D. Keukeleire, S. H. He, D. Blakemore and A. Gilbert, Intramolecular photocycloaddition reactions of 4-phenoxybut-1-enes, J. Photochem. Photobiol., A 1994, 80, 233–240.

    Article  Google Scholar 

  128. D. Bryce-Smith, A. Gilbert, B. Orger and H. Tyrrell, Polar and stereochemical aspects of 1,2-photoaddition of ethylenes to benzenes, J. Chem. Soc., Chem. Commun. 1974 334–336.

    Google Scholar 

  129. H. Leismann, J. Mattay and H.-D. Scharf, Photochemical cycloaddition of olefins to aromatic compounds. 5. Formation and deactivation of exciplexes from singlet benzene or toluene and 1,3-dioxoles, J. Am. Chem. Soc. 1984, 106, 3985–3991.

    Article  CAS  Google Scholar 

  130. J. Mattay, Selectivity and charge transfer in photoreactions of arenes with olefines 1. Substitution versus cycloaddition, Tetrahedron 1985, 41, 2393–2404.

    Article  CAS  Google Scholar 

  131. J. Mattay, Selectivity and charge transfer in photoreactions of arenes with olefines 2. Mode of cycloaddition, Tetrahedron 1985, 41, 2405–2417.

    Article  CAS  Google Scholar 

  132. F. Müller and J. Mattay, Photocycloadditions: control by energy and electron transfer, Chem. Rev. 1993, 93, 99–117.

    Article  Google Scholar 

  133. M. Ohashi, Y. Tanaka and S. Yamada, The [2 + 2] cycloaddition vs substitution in photochemical reactions of methoxybenzene-acrylonitrile systems, Tetrahedron Lett. 1977, 18, 3629–3632.

    Article  Google Scholar 

  134. P. J. Wagner, M. Sakamoto and A. E. Madkour, Regioselectivity in intramolecular cycloaddition of double bonds to triplet benzenes, J. Am. Chem. Soc. 1992, 114, 7298–7299.

    Article  CAS  Google Scholar 

  135. N. Hoffmann and J.-P. Pete, Intramolecular [2 + 2] photocycloaddition of bichromophoric derivatives of 3,5-dihydroxybenzoic acid and 3,5-dihydroxybnezonitrile, Synthesis 2001 1236–1242.

    Google Scholar 

  136. S. Y. Al-Qaradawi, K. B. Cosstick and A. Gilbert, Intramolecular photocycloaddition of 4-phenoxybut-1-enes: a convenient access to the 4-oxatricyclo[7.2.0.0]undeca-2,10-diene skeleton, J. Chem. Soc., Perkin Trans. 1 1992 1145–1148.

    Google Scholar 

  137. A. Gilbert and K. B. Cosstick, 11-Cyano-4-oxatricyclo[7.2.0.03,7]undeca-2,10-diene, in Photochemical Key Steps in Organic Synthesis, ed. J. Mattay and A. G. Griesbeck, VCH, Weinheim, 1994, pp. 175–176.

    Google Scholar 

  138. P. J. Wagner and K. McMahon, Chiral auxiliaries promote both diastereoselective cycloaddition and kinetic resolution of products in the ortho photocycloaddition of double bonds to benzene rings, J. Am. Chem. Soc. 1994, 116, 10827–10828.

    Article  CAS  Google Scholar 

  139. H. Buschmann, H.-D. Scharf, N. Hoffmann and P. Esser, The isoinversion principle–a general model of chemical selectivity, Angew. Chem., Int. Ed. Engl. 1991, 30, 477–515.

    Article  Google Scholar 

  140. H. Buschmann, H.-D. Scharf, N. Hoffmann, M. W. Plath and J. Runsink, Chiral induction in photochemical reactions. Part. 10. The principle of isoinversion–a model of stereoselection developed from the Paternò–Büchi reaction, J. Am. Chem. Soc. 1989, 111, 5367–5373.

    Article  CAS  Google Scholar 

  141. N. Hoffmann and J.-P. Pete, Acid catalyzed intramolecular photochemical reactions of 3-alkenyloxyphenoles, Tetrahedron Lett. 1996, 37, 2027–2030.

    Article  CAS  Google Scholar 

  142. N. Hoffmann and J.-P. Pete, Intramolecular photochemical reactions of bichromophoric 3-(alkenyloxy)phenols and 1-(alkenyloxy)-3-(alkyloxy)benzene derivatives. Acid-catalyzed transformations of the primary cycloadducts, J. Org. Chem. 1997, 62, 6952–6960.

    Article  CAS  Google Scholar 

  143. N. Hoffmann, J. P. Pete, Y. Inoue and T. Mori, Novel [2 + 2] photocycloaddition-induced rearrangement of bichromophoric naphthalene-tethered resorcinol ethers, J. Org. Chem. 2002, 67, 2315–2322.

    Article  CAS  PubMed  Google Scholar 

  144. A. K. Sadana, R. K. Saini and W. E. Billups, Cyclobutarenes and related compounds, Chem. Rev. 2003, 103, 1539–1602.

    Article  CAS  PubMed  Google Scholar 

  145. C. Verrat, N. Hoffmann and J.-P. Pete, An easy access to benzo[f]isoquinoline derivatives using benzocyclobutenes derived from resorcinol, Synlett 2000 166–1168.

    Google Scholar 

  146. C. Verrat, Photocycloadditions [2 + 2] intramoléculaires d’éthers de polyphénols: accès au squelette de produits naturels hétérocycliques, PhD thesis,Université de Reims Champagne-Ardenne, 2000.

    Google Scholar 

  147. N. Hoffmann and J.-P. Pete, Intramolecular photochemical reactivity of O-Alk-3-enylsalicylic esters, Tetrahedron Lett. 1995, 36, 2623–2626.

    Article  CAS  Google Scholar 

  148. N. Hoffmann and J.-P. Pete, Acid catalyzed intramolecular [2 + 2] photocycloaddition of 3,5-dihydroxybenzoic acid derivatives, Tetrahedron Lett. 1998, 39, 5027–5030.

    Article  CAS  Google Scholar 

  149. G. P. Kalena, P. Pradhan and A. Baneerji, A novel intramolecular 1,2-arene-alkene phorocycloaddition, Tetrahedron Lett. 1992, 33, 7775–7778.

    Article  CAS  Google Scholar 

  150. G. P. Kalena, P. Pradhan, Y. Swaranlatha, T. P. Singh and A. Baneerji, Intramolecular photorearrangement of a 2-alkenyl-4-chromanone to an oxapentacyclotetradecanedione, Tetrahedron Lett. 1997, 38, 5551–5554.

    Article  CAS  Google Scholar 

  151. G. P. Kalena, P. Pradhan and A. Baneerji, Stereo- and regioselectivity o intramolecular 1,2-arene-alkene photocycloaddition in 2-alkenyl-4-chromanones, Tetrahedron 1999, 55, 3209–3218.

    Article  CAS  Google Scholar 

  152. F. Birbaum, A. Neels and C. G. Bochet, Photochemistry of allenyl salicylaldehydes, Org. Lett. 2008, 10, 3175–3178.

    Article  CAS  PubMed  Google Scholar 

  153. K. Kishikawa, S. Akimoto, S. Kohmoto, M. Yamamoto and K. Yamada, Intramolecular photo[4 + 2]cycloaddition on an enone with a benzene ring, J. Chem. Soc., Perkin Trans. 1 1997 77–84.

    Google Scholar 

  154. S. Kohmoto, V. Miyaji, M. Tsuruoka, K. Kishikawa, M. Yamamoto and K. Yamada, Highly peri- and stereoselective intramolecular photocycloaddition and cyclization on N-(1-naphthylethyl)pro-2-enamides, J. Chem. Soc., Perkin Trans. 1 2001 2082–2088.

    Google Scholar 

  155. T. Noh, D. Kim and Y.-J. Kim, Photocycloaddition of cyanonaphthalenes to 1,3-cyclohexadiene, J. Org. Chem. 1998, 63, 1212–1216.

    Article  CAS  Google Scholar 

  156. . See also: A. Albini, E. Fasani and F. Giavarini, Photochemical reaction between naphthalenecarbonitriles and dienes, J. Org. Chem. 1988, 53, 5601–5607.

    Article  CAS  Google Scholar 

  157. T. Noh and D. Kim, Reinvestigation in the photoreaction of 1-naphthalenecarbonitrile and furan, Tetrahedron Lett. 1996, 52, 9329–9332.

    Article  Google Scholar 

  158. H. Mukae, H. Maeda and K. Mizuno, One-step synthesis of benzotetra- and benzopentacyclic compounds through intramolecular [2 + 3] photocycloaddition of alkenes to naphthalene, Angew. Chem., Int. Ed. 2006, 45, 6558–6560.

    Article  CAS  Google Scholar 

  159. See also: Y. Yoshimi, S. Konishi, H. Maeda and K. Mizuno, Site-selective intramolecular photocycloaddition of 2-alkenyl-substituted 1-cyanonaphthalenes depending on additives, solvents and substituents, Synthesis 2001 1197–1202.

    Google Scholar 

  160. J. J. McCullough, W. K. MacInnis, C. J. L. Lock and R. Faggiani, Naphthonitril-alkene exciplexes. comparison of bimolecular and bichromophoric cases: effects of linking on fluorescence and photochemistry, J. Am. Chem. Soc. 1992, 104, 4644–4658.

    Article  Google Scholar 

  161. D. Döpp, C. Krüger, H. R. Memarian and Y.-H. Tsay, 1,4-Photocycloaddition of a-morpholinoacrylonitrile to 1-acylnaphthalenes, Angew. Chem., Int. Ed. Engl. 1985, 24, 1048–1049.

    Article  Google Scholar 

  162. D. Döpp, H. R. Memarian, C. Krüger and E. Raabe, 1,4-Photoaddition of a-(tert-butylthio)acrylonitrile to acylnaphthalenes, Chem. Ber. 1989, 122, 585–588.

    Article  Google Scholar 

  163. H. Rau, Asymmetric photochemistry in solution, Chem. Rev. 1983, 83, 535–547.

    Article  CAS  Google Scholar 

  164. Y. Inoue, Asymmetric photochemical reactions in solution, Chem. Rev. 1993, 93, 741–770.

    Article  Google Scholar 

  165. A. G. Griesbeck and U. J. Meierhenrich, Asymmetric photochemistry and photochirogenesis, Angew. Chem., Int. Ed. 2002, 41, 3147–3154.

    Article  Google Scholar 

  166. Chiral Photochemistry, ed. Y. Inoue and V. Ramamurthy, Marcel Dekker, New York, 2004.

    Google Scholar 

  167. T. Bach, C. Müller, Chirality control in photochemical reactions: enantioselective formation of complex photoproducts in solution, Aust. J. Chem. 2008, 61, 551–564.

    Google Scholar 

  168. D. Döpp and M. Pies, High asymmetric induction in the photo-Diels–Alder addition, J. Chem. Soc., Chem. Commun. 1987 1734–1735.

    Google Scholar 

  169. See also: D. Döpp, A. W. Erian and G. Henkel, Light-induced [2 + 2] cycloaddition of 2-morpholinoacrylonitrile to 1-naphthalenecarbonitrile, Chem. Ber. 1993, 126, 239–242.

    Article  Google Scholar 

  170. D. Döpp and H. R. Memarian, 1,4-Photoadditions o a-morpholinoacrylonitrile to 1-acylnaphthalenes, Chem. Ber. 1990, 123, 315–319.

    Article  Google Scholar 

  171. D. Döpp, J. Bredehorn, A. W. Erian, A. Jung, H. Lanfermann, H. R. Memarian, B. Mühlbacher and M. Pies, Light induced cycloadditions of captodative alkenes, Proc.–Indian Acad. Sci., Chem. Sci. 1993, 105, 583–5893.

    Article  Google Scholar 

  172. K. Ohkura, T. Sugaoi, K. Nishijima, Y. Kuge and K. Seki, Stereoselective synthesis of 4a-fluoro-5,10-ethenobenzo[f]quinazoline via photo-Diels–Alder reaction of 5-fluoro-1,3-dimethyluracil with naphthalenes, Tetrahedron Lett. 2002, 43, 3113–3115.

    Article  CAS  Google Scholar 

  173. N. Hoffmann, New photochemical rearrangements and extrusion reactions of aromatic compounds induced by an intramolecular [2 + 2] photocycloaddition between a naphthalene and a resocinol moiety, Tetrahedron 2002, 58, 7933–7941.

    Article  CAS  Google Scholar 

  174. J. P. Dittami, X. Y. Nie, H. Nie, H. Ramanathan, C. Buntel, S. Rigatti, J. Bordner, D. L. Decosta and P. Williard, Tandem photocyclization-intramolecular addition reactions of aryl vinyl sulfides. Observation of a novel [2 + 2] cycloaddition-allylic sulfide rearrangement, J. Org. Chem. 1992, 57, 1151–1158.

    Article  CAS  Google Scholar 

  175. I. Ninomiya, Application of enamide chemistry to the synthesis of hetereocyclic compounds, Heterocycles 1980, 14, 1567–1579.

    Article  CAS  Google Scholar 

  176. I. Ninomiya and T. Naito, Enamide photocyclization and its application to the synthesis of heterocycles, Heterocycles 1981, 15, 1433–1462.

    Article  CAS  Google Scholar 

  177. W. Laarhoven, Photocyclizations and intramolecular photocycloadditions on conjugated arylolefins and related compounds, Org. Photochem. 1989, 10, 163–308.

    CAS  Google Scholar 

  178. Y. Troin, M.-E. Sinibaldi, D. Gardette, D. Dugat, M. Dufour and J.-C. Gramain, Stereospecific photochemical synthesis of cis- and trans-hexahydrocarbazol-4-ones. Useful synthons for the total synthesis of Aspidosperma alkaloids, Trends Heterocyclic Chem. 1995, 4, 159–167.

    CAS  Google Scholar 

  179. M. Irie (Guest Editor), Special issue on photochromism: memories and switches, Chem. Rev., 2000,100(5).

    Google Scholar 

  180. H. Bouas-Laurent, A. Castellan, J.-P. Desvergne and R. Lapouyade, Photodimerization of anthracenes in fluid solutions: (part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavage, Chem. Soc. Rev. 2001, 30, 248–263.

    Article  CAS  Google Scholar 

  181. H. Bouas-Laurent, A. Castellan, J.-P. Desvergne and R. Lapouyade, Photodimerization of anthracenes in fluid solution: structural aspects, Chem. Soc. Rev. 2000, 29, 43–55.

    Article  CAS  Google Scholar 

  182. H.-D. Becker, Unimolecular photochemistry of anthracenes, Chem. Rev. 1993, 93, 145–172.

    Article  CAS  Google Scholar 

  183. J. Fritzsche, Ueber die festen Kohlenwasserstoffe des Steinkohlentheers, J. Prakt. Chem. 1867, 101, 333–343.

    Article  Google Scholar 

  184. J. Fritzsche, Ueber die festen Kohlenwasserstoffe des Steinkohlentheers, Z. Chem. 1867, 10, 289–294.

    Google Scholar 

  185. J. Fritzsche, Ueber die festen Kohlenwasserstoffe des Steinkohlentheers, Z. Chem. 1866, 9, 139–144.

    Google Scholar 

  186. D. E. Applequist, R. L. Litle, E. C. Friedrich and R. E. Wall, Anthracene photodimers. I. Elimination and substitution reactions of the photodimer of 9-bromoanthracene, J. Am. Chem. Soc. 1959, 81, 452–456.

    Article  CAS  Google Scholar 

  187. R. L. Viavattene, F. D. Greene, L. D. Cheung, R. Majeste and L. M. Trefonas, 9,9’,10,10’-tetradehydrodianthracene. Formation, protection, and regeneration of a strained double bone, J. Am. Chem. Soc. 1974, 96, 4343–4343.

    Article  Google Scholar 

  188. H. Hopf, Classics in Hydrocarbon Chemistry, Wiley-VCH, Weinheim, 2000.

    Google Scholar 

  189. A. Nakamura and Y. Inoue, Suprmolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by ?-cyclodextrin, J. Am. Chem. Soc. 2003, 125, 966–972.

    Article  CAS  PubMed  Google Scholar 

  190. C. Yang, A. Nakamura, T. Wada and Y. Inoue, Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by ?-cyclodextrins with a flexible or rigid cap, Org. Lett. 2006, 8, 3005–3008.

    Article  CAS  PubMed  Google Scholar 

  191. C. Yang, T. Mori and Y. Inoue, Supramolecular enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by capped ?-cyclodextrins: critical control of enantioselectivity by cap rigidity, J. Org. Chem. 2008, 73, 5786–5794.

    Article  CAS  PubMed  Google Scholar 

  192. C. Yang, C. Ke, W. Liang, G. Fukuhara, T. Mori, Y. Liu and Y. Inoue, Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host, J. Am. Chem. Soc. 2011, 133, 13786–13789.

    Article  CAS  PubMed  Google Scholar 

  193. Q. Wang, C. Yang, G. Fukuhara, T. Mori, Y. Liu and Y. Inoue, Supramolecular FRET photocyclodimerization of anthracenecarboxylate with naphthalene-capped ?-cyclodextrin, Beilstein J. Org. Chem. 2011, 7, 290–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. J.-P. Desvergne, N. Bitit, A. Castellan, H. Bouas-Laurent, Study of non-conjucated bichromophoric systems. Part 3. The photocyclomerization of 9-(1-naphthylmethoxymethyl)anthracene and 9-(2-Furylmethoxymethylanthracene. Interest of the CH2–O–CH2 link, J. Chem. Soc., Perkin Trans. 2 1983 109–114.

    Google Scholar 

  195. See for example: J.-P. Desvergne, A. Castellan, H. Bouas-Laurent, New intramolecular exciplexes between polynuclear aromatic hydrocarbons and head-to-head vs head-to-tail photodimerization of mesosubstituted anthracenes, Tetrahedron Lett. 1981, 22, 3529–3532.

    Article  CAS  Google Scholar 

  196. H. Bouas-Laurent, A. Castellan, M. Daney, J.-P. Desvergne, G. Guinand, P. Marsau and M.-H. Riffaud, Cation directed photochemistry of an anthraceno-crown ether, J. Am. Chem. Soc. 1986, 108, 315–317.

    Article  CAS  Google Scholar 

  197. H. Bouas-Laurent, A. Castellan and J.-P. Desvergne, From anthracene photodimerization to jaw photochromic materials and photochroms, Pure Appl. Chem. 1980, 52, 2633–2648.

    Article  CAS  Google Scholar 

  198. F. C. De Schyver, N. Boens and J. Put, Excited state behavior of some bichromophoric systems, Adv. Photochem. 1977, 10, 259–465.

    Google Scholar 

  199. F. C. De Schyver, N. Boens, J. Huybrechts, J. Daemen, M. De Brackeleire, Photochemistry of bichromophoric compounds: Scope and expectations, Pure Appl. Chem. 1977, 49, 237–247.

    Article  Google Scholar 

  200. S. Kohmoto, H. Masu, C. Tatsuno, K. Kishikawa, M. Yamamoto and K. Yamaguchi, Diastereoselective intramolecular [4 + 4] photocycloaddition reaction of N-(naphthylcarbonyl)anthracene-9-carboxamides: temperature effects and reversal of diastereoselectivity, J. Chem. Soc., Perkin Trans. 1 2000 4464–4468.

    Google Scholar 

  201. T. Brotin, R. Utermöhlen, F. Fages, H. Bouas-Laurent and J.-P. Dsvergne, A novel small molecular luminescence gelling agent for alcohols, J. Chem. Soc., Chem. Commun. 1991 416–418.

    Google Scholar 

  202. J.-L. Pozzo, G. M. Clavier, M. Colomes, H. Bouas-Laurent, Different synthetic routes towards efficient organogelators: 2,3-substituted anthracenes, Tetrahedron 1997, 53, 6377–6390.

    Article  CAS  Google Scholar 

  203. See for example: J. Reichwagen, H. Hopf, A. Del Guerzo, J.-P. Desvergne, H. Bouas-Laurent, Photodimers of a soluble tetracene derivative. Excimer fluorescence from the head-to-head Isomer, Org. Lett. 2004, 6, 1899–1902.

    Article  CAS  PubMed  Google Scholar 

  204. A. G. L. Olive, A. Del Guerzo, J.-L. Pozzo, J.-P. Desvergne, J. Reichwagen and H. Hopf, Photodimerization of soluble tetracene derivatives using visible light, J. Phys. Org. Chem. 2007, 20, 838–844.

    Article  CAS  Google Scholar 

  205. A. Kleineweischede and J. Mattay, Photochemical reaction of fullerenes and fullerene derivatives, in CRC Handbook of Organic Photochemistry and Photobiology ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd edn, 2004, pp.28/1–28/42.

    Google Scholar 

  206. A. Hirsch, Fullerenes, Wiley-VCH, Weinheim, 2004.

    Book  Google Scholar 

  207. N. D. McClenaghan, C. Absalon and D. M. Bassani, Facile synthesis of a fullerene-barbituric acid derivative and supramolecular catalysis of its photoinduced dimerization, J. Am. Chem. Soc. 2003, 125, 13004–13005.

    Article  CAS  PubMed  Google Scholar 

  208. See also: F. Cataldo, On C60 photopolymerization, Polym. Int. 1999, 48, 143–149.

    Article  CAS  Google Scholar 

  209. A. Rao, P. Zhou, K.-A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W. T. Lee, X.-X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan and I. J. Amster, Photoinduced polymerization of solid C60 Films, Science 1993, 259, 955–957.

    Article  CAS  Google Scholar 

  210. K. P. Meledov, V. A. Davydov, A. V. Rachmanina, V. Agafonov, J. Arvanitidis, D. Christofilos, K. S. Andrikopoylos and G. A. Kourouklis, Influence of pressure on the photopolymerization rate of the linear orthorhombic polymer of C60, Chem. Phys. Lett. 2006, 428, 298–302.

    Article  CAS  Google Scholar 

  211. V. I. Artyukhov, E. E. Belova and L. A. Chernozatonskii, New phase of polymeric C60: double chains via [2 + 2] cycloaddition, Phys. Status Solidi B 2008, 245, 2022–2024.

    Article  CAS  Google Scholar 

  212. J. L. Segura, N. Martín, o-Quinodimethanes, efficient intermediates in organic synthesis, Chem. Rev. 1999, 99, 3199–3246.

    Article  CAS  PubMed  Google Scholar 

  213. J. L. Charlton and M. M. Alauddin, Orthoquinodimethanes, Tetrahedron 1987, 43, 2873–2889.

    Article  CAS  Google Scholar 

  214. G. Quinkert and H. Stark, Stereoselective synthesis of enantiomerically pure natural products–estrone as example, Angew. Chem., Int. Ed. Engl. 1983, 22, 637–655.

    Article  Google Scholar 

  215. K. C. Nicolaou, D. L. F. Gray and J. Tae, Total synthesis of hamigerans and analogues thereof. Photochemical generation and Diels–Alder trapping of hydroxyl- o-quinodimethanes, J. Am. Chem. Soc. 2004, 126, 613–627.

    Article  CAS  PubMed  Google Scholar 

  216. K. C. Nicolaou and D. L. F. Gray, Total synthesis of hybocarpone and analogues thereof. A facile dimerization of naphthazarins to pentacyclic systems, J. Am. Chem. Soc. 2004, 126, 607–612.

    Article  CAS  PubMed  Google Scholar 

  217. T. Nishio, N. Sakurai, K. Iba, Y. Hamano and M. Sakamoto, Intramolecular photocyclization of 2-acylphenyl methacrylates: a convenient access to 4,5-dihydro-1,4-epoxy-2-benzoxepin-3(1H)-ones (= benzo[c]-6,8-dioxabicyclo[3.2.1]octan-7-ones, Helv. Chim. Acta 2005, 88, 2603–2609.

    Article  CAS  Google Scholar 

  218. R. Pérez-Ruiz, I. Hinze, J.-M. Neudörfl, D. Blunk, H. Görner and A. G. Griesbeck, Photochemistry of allyloxybenzophenones: a pseudo-Paternò–Büchi rearrangement accompanied by hydrogen transfer induced 1,5-cyclization, Photochem. Photobiol. Sci. 2008, 7, 782–788.

    Article  PubMed  CAS  Google Scholar 

  219. R. G. Brinson, S. C. Hubbard, D. R. Zuidema and P. B. Jones, Two new anthraquinone photoreactions, J. Photochem. Photobiol., A 2005, 175, 118–128.

    Article  CAS  Google Scholar 

  220. O. Yonemitsu, P. Cerutti and B. Witkop, Photoreductions and photocyclizations of tryptophan, J. Am. Chem. Soc. 1966, 88, 3941–3945.

    Article  CAS  PubMed  Google Scholar 

  221. K. Feldman and P. Ngernmeesri, Total synthesis of (±)-dragmacidin E, Org. Lett. 2011, 13, 5704–5707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. K. S. Feldman and P. Ngernmeesri, Dragmacidin E synthesis studies. Preparation of a model cycloheptannelated indole fragment, Org. Lett. 2005, 7, 5449–5452.

    Article  CAS  PubMed  Google Scholar 

  223. K. S. Feldman and P. Ngernmeesri, Dragmacidin E synthesis studies. Preparation of a model heptacyclic core structure, Org. Lett. 2010, 12, 4502–4505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. M. Mascal, K. V. Modes and A. Durmus, Concise photochemical synthesis of the antimalarial indole alkaloid decursivine, Angew. Chem., Int. Ed. 2011, 50, 4445–4446.

    Article  CAS  Google Scholar 

  225. H. Qin, Z. Xu, Y. Cui and Y. Jia, Total synthesis of (±)-decursivine and (±)-serotobenine: a witkop photocyclization/elimination/O-Michael addition cascate approach, Angew. Chem., Int. Ed. 2011, 50, 4447–4449.

    Article  CAS  Google Scholar 

  226. T. Ritter and E. M. Carreira, The diazonamides: the plot thickens, Angew. Chem., Int. Ed. 2002, 41, 2489–2495.

    Article  CAS  Google Scholar 

  227. A. W. G. Burgett, Q. Li, Q. Wei and P. G. Harran, A concise and flexible total synthesis of (-)-diazonamide A, Angew. Chem., Int. Ed. 2003, 42, 4961–4966.

    Article  CAS  Google Scholar 

  228. K. C. Nicolaou, M. Bella, D. Y.-K. Chen, X. Huang, T. Ling and S. A. Snyder, Total synthesis of diazonaminde A, Angew. Chem., Int. Ed. 2002, 41, 3495–3499.

    Article  CAS  Google Scholar 

  229. R. A. Rossi, A. B. Pierini and A. N. Santiago, Aromatic substitution by the SRN1 reaction, Org. React. 1999, 54, 1–271.

    CAS  Google Scholar 

  230. R. A. Rossi, A. B. Pierini, A. B. Peñéñory, Nucleophilic substitution reactions by electron transfer, Chem. Rev. 2003, 103, 71–167.

    Article  CAS  PubMed  Google Scholar 

  231. A. B. Peñéñory and J. E. Agüello, Aromatic and heteroaromatic substitution by SRN1 and SN1 reactions, in Handbook of Synthetic Photochemistry, ed. A. Albini and M. Fagnoni, Wiley-VCH, Weinheim, 2010, pp. 319–351.

    Google Scholar 

  232. M. Aschi and J. N. Harvey, Spin isomerization of para-substituted phenyl cations, J. Chem. Soc., Perkin Trans. 2 1999 1059–1062.

    Google Scholar 

  233. S. Lazzaroni, D. Dondi, M. Fagnoni and A. Albini, Geometry and energy of substituted phenyl cations, J. Org. Chem. 2008, 73, 206–211.

    Article  CAS  PubMed  Google Scholar 

  234. K. K. Laali, G. Rasul, G. K. S. Prakash and G. A. Olah, DFT study of substituted and benzannelated aryl cations: substituent dependency of singlet/triplet ratio, J. Org. Chem. 2002, 67, 2913–2918.

    Article  CAS  PubMed  Google Scholar 

  235. V. Dichiarante, M. Fagnoni and A. Albini, Using phenyl cations as probes for establishing electrophilicity–nucleophilicity relations, J. Org. Chem. 2008, 73, 1282–1289.

    Article  CAS  PubMed  Google Scholar 

  236. V. Dichiarante and M. Fagnoni, Aryl cation chemistry as an emerging versatile tool for metal-free arylations, Synlett 2008 787–800.

    Google Scholar 

  237. M. Fagnoni and A. Albini, Acc. Chem. Res. 2005, 38, 713–721.

    Article  CAS  PubMed  Google Scholar 

  238. B. Guizzardi, M. Mella, M. Fagnoni and A. Albini, Easy photochemical preparation of 2-dimethylaminophenylfurans, -pyrroles and -thiophenes, Tetrahedron 2000, 56, 9383–9389.

    Article  CAS  Google Scholar 

  239. S. Protti, M. Fagnoni and A. Albini, Photo-cross-coupling reaction of electron-rich aryl chlorides and aryl esters with alkynes: a metal-free alkynylation, Angew. Chem., Int. Ed. 2005, 44, 5675–5678.

    Article  CAS  Google Scholar 

  240. For recent examples see: S. Protti, V. Dichiarante, D. Dondi, M. Fagnoni and A. Albini, Singlet/triplet phenyl cations and benzyne from the photodehalogenation of some silylated and stannylated phenyl halides, Chem. Sci. 2012, 3, 1330–1337. and references cited therein

    Article  CAS  Google Scholar 

  241. J. Cossy, Réactions photochimiques de transfert d’électron. Applications en synthèse organique, Bull. Soc. Chim. Fr. 1994, 131, 344–356.

    CAS  Google Scholar 

  242. U. C. Yoon, P. S. Mariano, R. S. Givens, B. W. Atwater III, Photoinduced electron transfer chemistry of amines and related electron donors, Adv. Electron Transfer Chem. 1994, 4, 117–205.

    CAS  Google Scholar 

  243. N. Hoffmann, S. Bertrand, S. Marinkovic and J. Pesch, Efficient radical addition of tertiary amines to alkenes using photochemical electron transfer, Pure Appl. Chem. 2006, 78, 2227–2246.

    Article  CAS  Google Scholar 

  244. A. G. Griesbeck, N. Hoffmann and K. D. Warzecha, Photoinduced electron transfer chemistry: from studies on PET processes to applications in natural product synthesis, Acc. Chem. Res. 2007, 40, 128–140.

    Article  CAS  PubMed  Google Scholar 

  245. N. Hoffmann, Photochemical induced radical addition of tertiary amines to C?C and C?O double bonds–a “Green Chemistry” contribution to organic synthesis, Pure Appl. Chem. 2007, 79, 1949–1958.

    Article  CAS  Google Scholar 

  246. S. Bertrand, N. Hoffmann, J.-P. Pete and V. Bulach, Stereoselective radical-tandem reaction of aniline derivatives with (5R)-5-menthyloxy-2[5H]-furanone initiated by photochemical induced electron transfer, Chem. Commun. 1999 2291–2292.

    Google Scholar 

  247. S. Bertrand, N. Hoffmann, S. Humbel and J. P. Pete, Diastereoselective tandem addition-cyclization reactions of unsaturated tertiary amines initiated by photochemical electron tansfer (PET), J. Org. Chem. 2000, 65, 8690–8703.

    Article  CAS  PubMed  Google Scholar 

  248. S. Marinkovic, C. Brulé, N. Hoffmann, E. Prost, J.-M. Nuzillard and V. Bulach, The origin of chiral induction in radical reactions with the diastereoisomers (5 R)-5-(l)-menthyloxyfuran-2[5H]-one and (5 S)-5-(l)-menthyloxyfuran-2[5H]-one, J. Org. Chem. 2004, 69, 1646–1651.

    Article  CAS  PubMed  Google Scholar 

  249. S. Marinkovic and N. Hoffmann, Diastereoselective radical tandem addition-cyclization reactions of aromatic tertiary amines by semiconductor sensitized photochemical electron transfer, Eur. J. Org. Chem. 2004 3102–3107.

    Google Scholar 

  250. M. Julliard and M. Chanon, Photoelectron-transfer catalysis: its connection with thermal and electrochemical analogues, Chem. Rev. 1983, 83, 425–506.

    Article  CAS  Google Scholar 

  251. J. Mattay, Photochemical electron transfer in organic synthesis, Synthesis 1989 233–252.

    Google Scholar 

  252. R. M. Bowman, T. R. Chamberlain, C.-W. Huang and J. J. McCullough, Medium effects and quantum yields in the photoaddition of naphthalene and acrylonitrile. Chemical evidence on an exciplex structure, J. Am. Chem. Soc. 1974, 96, 692–700.

    Article  CAS  Google Scholar 

  253. D. Mangion, M. Frizzle, D. R. Arnold and T. S. Cameron, Synthesis 2001 1215–1222.

    Google Scholar 

  254. R. Jahjah, A. Gassama, F. Dumur, S. Marinkovic, S. Richert, S. Landgraf, A. Lebrun, C. Cadiou, P. Sellès and N. Hoffmann, Photochemical electron transfer mediated addition of naphthylamine derivatives to electron deficient alkenes, J. Org. Chem. 2011, 76, 7104–7118.

    Article  CAS  PubMed  Google Scholar 

  255. Handbook of C–H Transformations, ed. G. Dyker, Wiley-VCH, Weinheim, 2005,vols 1 and 2,; Special Issue: Activation of unreactive bonds for organic synthesis, Adv. Synth. Catal., 2003, 345(9–10) Special Issue: Selective functionalization of C–H bonds, Chem. Rev., 2010, 110 (2)

  256. See for example: B. Sezen and D. Sames, What is C–H bond activation? in Handbook of C–H Transformations, ed. G. Dyker, Wiley-VCH, Weinheim, 2005,vol. 1, pp. 3–10.

    CAS  Google Scholar 

  257. J. A. Labinger and J. E. Bercaw, Understanding and exploiting C–H bond activation, Nature 2002, 417, 507–514.

    Article  CAS  PubMed  Google Scholar 

  258. J. Borck, J. Dahm, V. Koppe, J. Krämer, G. Schorre, J. W. H. Hovy and E. Schorscher, (Merck-Anlagen-GmbH), Substituierte Aminophenylessigsäuren sowie Verfahren zu ihrer Herstellung, Patent DE1695385, 1971.

    Google Scholar 

  259. E. Schorscher, J. W. H. Hovy, G. Schorre, J. Borck, J. Dahm, V. Koppe and J. Kramer, 4-Aminophenyl acetic acid derivatives and preparation thereof, Patent GB1198212, 1970.

    Google Scholar 

  260. N. A. Paras and D. W. C. MacMillan, The enantioselective organocatalytic 1,4-addition of electron-rich benzenes to a,ß-unsaturated aldehydes, J. Am. Chem. Soc. 2002, 124, 7894–7895.

    Article  CAS  PubMed  Google Scholar 

  261. J.-L. Zhao, L. Liu, H.-B. Zhang, Y.-C. Wu, D. Wang and Y. J. Chen, Rapid and convenient synthesis of aryl- and heteroaryl-a-hydroxy-a-trifluoromethyl acetate via Friedel–Crafts alkylation under solvent- and catalyst-free conditions, Tetrahedron Lett. 2006, 47, 2511–2514.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Hoffmann.

Additional information

This article is published as part of a themed issue in honour of Jean-Pierre Desvergne on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, N. Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent. Photochem Photobiol Sci 11, 1613–1641 (2012). https://doi.org/10.1039/c2pp25074h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25074h

Navigation