Issue 22, 2022

Photoluminescence enhancement of orange-emitting Ca5(PO4)2SiO4:Sm3+ phosphor through charge compensation of A+ (Li+, Na+ and K+) ions for white light-emitting diodes

Abstract

The orange-emitting Ca5−x(PO4)2SiO4:xSm3+ (C5PSO:Sm3+) phosphor was prepared via a simple solid-state method, and the charge compensators A+ (A = Li, Na and K) were codoped into C5PSO:Sm3+ for improving the luminescence performance. The influences of Sm3+ doping and Sm3+/A+ codoping on the crystal structure and the luminescence performance of the C5PSO:Sm3+ phosphor were investigated in detail. The X-ray diffraction results exhibited that all the as-prepared samples were assigned to the standard structure Ca5(PO4)2SiO4 possessing the P63/m space group. Upon near-ultraviolet excitation at 401 nm, the characteristic emission peaks of the C5PSO:Sm3+ phosphors are located at 558 nm, 605 nm and 656 nm, respectively, which are derived from the 4G5/26HJ (J = 5/2, 7/2, and 9/2) electron transitions of Sm3+ ions. Furthermore, a significant luminescence improvement of the C5PSO:Sm3+ phosphor was attained through charge compensation of codoped A+ ions, and the emission intensity is enhanced by 1.79-, 1.45-, and 1.14-fold for K+, Na+, and Li+, respectively. In addition, the actual orange-red LED and w-LED fabricated with the as-prepared C5PSO:Sm3+,K+ phosphor showed excellent optical performance. All the results demonstrated that the C5PSO:Sm3+,K+ orange-emitting phosphor could act as a potential orange-red component in the w-LEDs illumination field.

Graphical abstract: Photoluminescence enhancement of orange-emitting Ca5(PO4)2SiO4:Sm3+ phosphor through charge compensation of A+ (Li+, Na+ and K+) ions for white light-emitting diodes

Article information

Article type
Paper
Submitted
04 Apr 2022
Accepted
11 May 2022
First published
11 May 2022

Dalton Trans., 2022,51, 8874-8884

Photoluminescence enhancement of orange-emitting Ca5(PO4)2SiO4:Sm3+ phosphor through charge compensation of A+ (Li+, Na+ and K+) ions for white light-emitting diodes

H. Xiong, X. Gao, F. Yuan, Q. Wu, W. Zhang and Y. Huang, Dalton Trans., 2022, 51, 8874 DOI: 10.1039/D2DT01034H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements