Skip to main content
Log in

Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We present a thorough introduction into the recently developed fluorescence lifetime correlation spectroscopy (FLCS). The theoretical basis of FLCS is explained, and the method is applied to the study of a dynamic transition between two fluorescence lifetime states in a dye—protein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Magde, E. Elson, W. W. Webb, Phys. Rev. Lett., 1972, 29, 705–708.

    Article  CAS  Google Scholar 

  2. E. L. Elson, D. Magde, Biopolymers, 1974, 13, 1–27.

    Article  CAS  Google Scholar 

  3. D. Magde, E. Elson, W. W. Webb, Biopolymers, 1974, 13, 29–61.

    Article  CAS  Google Scholar 

  4. N. L. Thompson, in Topics in Fluorescence Spectroscopy, ed. J. R. Lakowicz, Plenum Press, New York, 1991, vol. 1, pp. 337–378.

  5. J. Widengren and Ü. Mets, in Single-Molecule Detection in Solution - Methods and Applications, ed. C. Zander, J. Enderlein and R. A. Keller, Wiley-VCH, Berlin, 2002, pp. 69–95.

  6. Fluorescence Correlation Spectroscopy, ed. R. Rigler and E. Elson, Springer, Berlin, 2001.

    Google Scholar 

  7. P. Schwille, Cell. Biochem. Biophys., 2001, 34, 383–408.

    Article  CAS  Google Scholar 

  8. S. T. Hess, S. Huang, A. A. Heikal, W. W. Webb, Biochemistry, 2002, 41, 697–705.

    Article  CAS  Google Scholar 

  9. O. Krichevsky, G. Bonnet, Rep. Prog. Phys., 2002, 65, 251–297.

    Article  CAS  Google Scholar 

  10. P. Schwille, F. J. Meyer-Almes, R. Rigler, Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution, Biophys. J., 1997, 72, 1878–1886.

    Article  CAS  Google Scholar 

  11. J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, H. Kretzschmar, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5468–5473.

    Article  CAS  Google Scholar 

  12. J. L. Swift, A. Carnini, T. E. S. Dahms, D. T. Cramb, J. Phys. Chem. B, 2004, 108, 11133–11138.

    Article  CAS  Google Scholar 

  13. A. Camacho, K. Korn, M. Damond, J. F. Cajot, E. Litborn, B. H. Liao, P. Thyberg, H. Winter, A. Honegger, P. Gardellin, R. Rigler, J. Biotechnol., 2004, 107, 107–114.

    Article  CAS  Google Scholar 

  14. K. Rippe, Biochemistry, 2000, 39, 2131–2139.

    Article  CAS  Google Scholar 

  15. N. Baudendistel, G. Müller, W. Waldeck, P. Angel, J. Langowski, ChemPhysChem, 2005, 6, 984–990.

    Article  CAS  Google Scholar 

  16. U. Kettling, A. Koltermann, P. Schwille, M. Eigen, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 1416–1420.

    Article  CAS  Google Scholar 

  17. A. Koltermann, U. Kettling, J. Bieschke, T. Winkler, M. Eigen, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 1421–6.

    Article  CAS  Google Scholar 

  18. K. Bacia, S. A. Kim, P. Schwille, Nat. Methods, 2006, 3, 83–89.

    Article  CAS  Google Scholar 

  19. K. Heinze, A. Koltermann, P. Schwille, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 10377–10382.

    Article  CAS  Google Scholar 

  20. L. C. Hwang, T. Wohland, J. Chem. Phys., 2005, 122, 114708.

    Article  Google Scholar 

  21. M. Böhmer, M. Wahl, H. J. Rahn, R. Erdmann, J. Enderlein, Chem. Phys. Lett., 2002, 353, 439–445.

    Article  Google Scholar 

  22. D. V. O’Connor and D. Phillips, Time-correlated single photon counting, Academic Press, London, 1984.

    Google Scholar 

  23. M. Böhmer, F. Pampaloni, M. Wahl, H. J. Rahn, R. Erdmann, J. Enderlein, Rev. Sci. Instrum., 2001, 72, 4145–4152.

    Article  Google Scholar 

  24. G. Leclerc, J. J. Pireaux, J. Electron Spectrosc. Relat. Phenom., 1995, 71, 141–190.

    Article  CAS  Google Scholar 

  25. J. Enderlein, R. Erdmann, Opt. Commun., 1997, 134, 371–378.

    Article  CAS  Google Scholar 

  26. J. Enderlein, I. Gregor, Rev. Sci. Instrum., 2005, 76, 033102.

    Article  Google Scholar 

  27. M. Höbel, J. Ricka, Rev. Sci. Instrum., 1994, 65, 2326–2336.

    Article  Google Scholar 

  28. M. Wahl, I. Gregor, M. Patting, J. Enderlein, Opt. Express, 2003, 11, 3583–3591.

    Article  Google Scholar 

  29. J. Widengren, P. Schwille, J. Phys. Chem. A, 2000, 104, 6416–6428.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Gregor.

Additional information

† Edited by T. Gensch and C. Viappiani. This paper is derived from the lecture given at the X School of Pure and Applied Biophysics “Time-resolved spectroscopic methods in biophysics” (organized by the Italian Society of Pure and Applied Biophysics), held in Venice in January 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregor, I., Enderlein, J. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photochem Photobiol Sci 6, 13–18 (2007). https://doi.org/10.1039/b610310c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b610310c

Navigation