Skip to main content

Advertisement

Log in

Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (VOC approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m−2 was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m−2, as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Logan, J. M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 2006, 14, 512–518.

    Article  CAS  Google Scholar 

  2. C. I. Torres, A. K. Marcus, B. E. Rittmann, Kinetics of consumption of fermentation products by anode-respiring bacteria, Appl. Microbiol. Biotechnol., 2007, 77, 689–697.

    Article  CAS  Google Scholar 

  3. B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiasse, R. A. Rozendal, Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter, Environ. Sci. Technol., 2008, 42, 8630–8640.

    Article  CAS  Google Scholar 

  4. H. Liu, S. Grot, B. E. Logan, Electrochemically Assisted Microbial Production of Hydrogen from Acetate, Environ. Sci. Technol., 2005, 39, 4317–4320.

    Article  CAS  Google Scholar 

  5. S. Cheng, B. E. Logan, Sustainable and efficient hydrogen production via electrohydrogenesis, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 18871–18873.

    Article  CAS  Google Scholar 

  6. T. H. J. A. Sleutels, H. V. M. Hamelers, R. A. Rozendal, C. J. N. Buisman, Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes, Int. J. Hydrogen Energy, 2009, 34, 3612–3620.

    Article  CAS  Google Scholar 

  7. F. F. Ajayi, K. Y. Kim, K. J. Chae, M. J. Choi, S. Y. Kim, I. S. Chang, In S. Kim, Study of hydrogen production in light assisted microbial electrolysis cell operated with dye sensitized solar cell, Int. J. Hydrogen Energy, 2009, 34, 9297–9304.

    Article  CAS  Google Scholar 

  8. B. O’Regan, M. Gratzel M, A low cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films, Nature, 1991, 353, 737–740.

    Article  Google Scholar 

  9. M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye sensitized solar cell, J. Photochem. Photobiol., A, 2004, 164, 3–14.

    Article  CAS  Google Scholar 

  10. M. Gratzel, Photoelectrochemical cells, Nature, 2001, 414, 338–344.

    Article  CAS  Google Scholar 

  11. E. Ramasamy, W. J. Lee, D. Y. Lee, J. S. Song, Spray coated multi-wall carbon nanotube counter-electrode for tri-iodide reduction in dye-sensitized solar cells, Electrochem. Commun., 2008, 10, 1087–1089.

    Article  CAS  Google Scholar 

  12. W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes, ACS Appl. Mater. Interfaces, 2009, 1, 1145–1149.

    Article  CAS  Google Scholar 

  13. J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, A flexible carbon counter-electrode for dye-sensitized solar cells, Carbon, 2009, 47, 2704–2708.

    Article  CAS  Google Scholar 

  14. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%, Jpn. J. Appl. Phys., 2006, 45, L638–L640.

    Article  CAS  Google Scholar 

  15. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc., 2001, 123, 1613–1624.

    Article  CAS  Google Scholar 

  16. K. J. Chae, M. J. Choi, J. W. Lee, F. F. Ajayi, I. S. Kim, Bio-hydrogen production via biocatalyzed electrolysis in acetate fed bio-electrochemical cells and microbial community analysis, Int. J. Hydrogen Energy, 2008, 33, 5184–5192.

    Article  CAS  Google Scholar 

  17. K. J. Chae, M. J. Choi, F. F. Ajayi, W. Park, I. S. Chang, I. S. Kim, Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells, Energy Fuels, 2008, 22, 169–176.

    Article  CAS  Google Scholar 

  18. S. Freguia, K. Rabaey, Z. Yuan, J. Keller, Electron and Carbon Balances in Microbial Fuel Cells Reveal Temporary Bacterial Storage Behavior during Electricity Generation, Environ. Sci. Technol., 2007, 41, 2915–2921.

    Article  CAS  Google Scholar 

  19. R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner, W. Hoffmann, A glass frit-sealed dye solar cell module with integrated series connections, Sol. Energy Mater. Sol. Cells, 2006, 90, 1680–1691.

    Article  CAS  Google Scholar 

  20. A. Melis, Green alga hydrogen production: progress, challenges and prospects, Int. J. Hydrogen Energy, 2002, 27, 1217–1228.

    Article  CAS  Google Scholar 

  21. M. Hambourger, A. Brune, D. Gust, A. L. Moore, T. A. Moore, Enzyme assisted reforming of glucose to hydrogen in a photo-electrochemical cell, Photochem. Photobiol., 2005, 81, 1015–1020.

    Article  CAS  Google Scholar 

  22. M. Hambourger, P. A. Liddell, D. Gust, A. L. Moore, T. A. Moore, Parameters affecting the chemical work output of a hybrid Photo-electrochemical biofuel cell, Photochem. Photobiol. Sci., 2007, 6, 431–437.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajayi, F.F., Kim, KY., Chae, KJ. et al. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system. Photochem Photobiol Sci 9, 349–356 (2010). https://doi.org/10.1039/b9pp00097f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00097f

Navigation