Issue 16, 2011

A set of highly water-soluble tetraethyleneglycol-substituted Zn(ii) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity

Abstract

Three Zn(II) phthalocyanines substituted by hydroxyl-terminated tetraethylene glycol chains have been synthesized. In order to evaluate the potential of these highly water-soluble phthalocyanines as type II-photosensitisers for photodynamic therapy, their structure–activity relationship was assessed by determining relevant photophysical and photochemical properties, such as their aggregation behaviour in aqueous buffers, their fluorescence properties and their efficiency with regard to the generation of singlet oxygen. In addition, evidence for a negligible interaction with plasma proteins in undiluted human plasma was obtained using a recently developed bioanalytical method and compared with the fluorescence quenching approach. These results combined with in vitro data regarding the phototoxicity of these phthalocyanines against HT-29 cancer cells provide evidence for the relevance of the non-peripherally substituted derivative for further in vivo investigations.

Graphical abstract: A set of highly water-soluble tetraethyleneglycol-substituted Zn(ii) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity

Supplementary files

Article information

Article type
Paper
Submitted
18 Sep 2010
Accepted
04 Nov 2010
First published
14 Dec 2010

Dalton Trans., 2011,40, 4067-4079

A set of highly water-soluble tetraethyleneglycol-substituted Zn(II) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity

S. Tuncel, F. Dumoulin, J. Gailer, M. Sooriyaarachchi, D. Atilla, M. Durmuş, D. Bouchu, H. Savoie, R. W. Boyle and V. Ahsen, Dalton Trans., 2011, 40, 4067 DOI: 10.1039/C0DT01260B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements