Issue 3, 2013

Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent

Abstract

We report here a new strategy to dramatically increase water flux in a forward osmosis (FO) process using reduced graphene oxide (rGO)-composite hydrogels as draw agents as well as increasing the rate of the subsequent regain of pure water from the hydrogel particles. The composite hydrogels were prepared by incorporating 0.3 wt%–3 wt% rGO into two different hydrogels: poly(sodium acrylate) (PSA) and poly(sodium acrylate)-poly(N-isopropylacrylamide) (PSA-NIPAM). The amount of incorporated rGO sheets had a significant effect on the swelling pressure of the composite hydrogels and the composite hydrogels with contained small amounts of rGO sheets (0.3–1.2 wt%) showed significantly enhanced swelling ratios while those with more rGO (e.g., 3 wt%) exhibited decreased swelling ratios. Consequently, significant enhancements in water flux in the FO process were achieved for composite hydrogels with small amounts of rGO. When compared with the pure hydrogels, the composite hydrogels PSA-1.2 wt% rGO and PSA-NIPAM-1.2 wt% rGO showed increased water fluxes of some 310% and 227%, respectively, when 2000 ppm of a NaCl aqueous solution was used as the feed. When deionized water was used, even higher water fluxes were attained, i.e., 8.2 L m−2 h−1 for PSA-1.2 wt% rGO and 6.8 L m−2 h−1 for PSA-NIPAM-1.2 wt% rGO. The swelling process of the particles was investigated using optical microscopy where it was found that the addition of small amounts of rGO greatly increased the softness of the composite hydrogels and improved the inter-particle and particle-membrane contact, leading to dramatically improved water fluxes. In addition, the light-absorbing property of rGO produced much better outcomes in terms of dewatering of the composite hydrogels in the second stage of the FO process, in which the pure water from the hydrogels is harvested, with dewatering stimulated by heating induced from absorbed solar energy. The water recovery rate for composites with 1.2 wt% rGO was found to be twice as fast as that for pure hydrogels.

Graphical abstract: Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2012
Accepted
11 Nov 2012
First published
13 Nov 2012

RSC Adv., 2013,3, 887-894

Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent

Y. Zeng, L. Qiu, K. Wang, J. Yao, D. Li, G. P. Simon, R. Wang and H. Wang, RSC Adv., 2013, 3, 887 DOI: 10.1039/C2RA22173J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements