Issue 17, 2014

Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications

Abstract

In the last few decades, Förster resonance energy transfer (FRET) based spectroscopy rulers have served as a key tool for the understanding of chemical and biochemical processes, even at the single molecule level. Since the FRET process originates from dipole–dipole interactions, the length scale of a FRET ruler is limited to a maximum of 10 nm. Recently, scientists have reported a nanomaterial based long-range optical ruler, where one can overcome the FRET optical ruler distance dependence limit, and which can be very useful for monitoring biological processes that occur across a greater distance than the 10 nm scale. Advancement of nanoscopic long range optical rulers in the last ten years indicate that, in addition to their long-range capability, their brightness, long lifetime, lack of blinking, and chemical stability make nanoparticle based rulers a good choice for long range optical probes. The current review discusses the basic concepts and unique light-focusing properties of plasmonic nanoparticles which are useful in the development of long range one dimensional to three dimensional optical rulers. In addition, to provide the readers with an overview of the exciting opportunities within this field, this review discusses the applications of long range rulers for monitoring biological and chemical processes. At the end, we conclude by speculating on the role of long range optical rulers in future scientific research and discuss possible problems, outlooks and future needs in the use of optical rulers for technological applications.

Graphical abstract: Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications

Article information

Article type
Review Article
Submitted
26 Dec 2013
First published
06 Jun 2014

Chem. Soc. Rev., 2014,43, 6370-6404

Author version available

Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications

P. C. Ray, Z. Fan, R. A. Crouch, S. S. Sinha and A. Pramanik, Chem. Soc. Rev., 2014, 43, 6370 DOI: 10.1039/C3CS60476D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements