Issue 3, 2014

Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12

Abstract

The phase stability of Li7La3Zr2O12 (LLZ) was investigated using high temperature X-ray diffraction (HT-XRD). An Al-free tetragonal LLZ phase transformed into a non-quenchable cubic phase around 650 °C. The phase transformation process between the tetragonal phase and the new cubic phase showed perfect reversibility. The thermal analysis showed a pair of endothermic and exothermic peaks around 640 °C that is in good agreement with the phase transformation process observed in the HT-XRD study. The non-quenchable high temperature cubic phase showed high ionic conductivity with extraordinarily low activation energy (0.117 eV). The tetragonal phase showed another phase transformation to a low temperature (LT) cubic phase around 150–200 °C in air by absorbing CO2 into the structure. The preferred temperature for the CO2 absorption process was around 200 °C and the absorbed CO2 was extracted once the temperature reached 450 °C or above resulting in the phase transformation back to the tetragonal phase. On the other hand the high temperature (HT) cubic phase which shows high ionic conductivity was stabilized by Al substitution. A Li-poor LLZ containing impurity phases such as La2Zr2O7 and La2O3 effectively reacted with γ-Al2O3 resulting in the formation of a pure Al-stabilized cubic LLZ, while the stoichiometric LLZ took a much longer time to complete the Al-substitution. The result suggested that the formation of Li vacancies is the primary step in the formation of the Al-stabilized cubic phase.

Graphical abstract: Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12

Article information

Article type
Paper
Submitted
25 Jul 2013
Accepted
26 Sep 2013
First published
28 Oct 2013

Dalton Trans., 2014,43, 1019-1024

Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12

M. Matsui, K. Takahashi, K. Sakamoto, A. Hirano, Y. Takeda, O. Yamamoto and N. Imanishi, Dalton Trans., 2014, 43, 1019 DOI: 10.1039/C3DT52024B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements