Skip to main content
Log in

The world’s highest levels of surface UV

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Chile’s northern Atacama Desert has been pointed out as one of the places on earth where the world’s highest surface ultraviolet (UV) may occur. This area is characterized by its high altitude, prevalent cloudless conditions and relatively low total ozone column. Aimed at detecting those peak UV levels, we carried out in January 2013 ground-based spectral measurements on the Chajnantor Plateau (5100 m altitude, 23°00′S, 67°45′W) and at the Paranal Observatory (2635 m altitude, 24°37′S, 70°24′W). The UV index computed from our spectral measurements peaked at 20 on the Chajnantor Plateau (under broken cloud conditions) and at 16 at the Paranal Observatory (under cloudless conditions). Spectral measurements carried out in June 2005 at the Izaña Observatory (2367 m altitude, 28°18′N, 16°30′W) were used for further comparisons. Due to the differences in sun—earth separation, total ozone column, altitude, albedo, aerosols and clouds, peak UV levels are expected to be significantly higher at southern hemisphere sites than at their northern hemisphere counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tevini, UV-B Radiation and Ozone Depletion: Effect on Humans, Animals, Plants, Microorganisms and Materials, Lewis, New York, 1993.

    Google Scholar 

  2. H. Slaper, G. J. M. Velders, J. S. Daniel, F. R. de Gruijl, J. C. van der Leun, Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements, Nature, 1996, 384, 256–258, DOI: 10.1038/384256a0.

    Article  CAS  PubMed  Google Scholar 

  3. A. F. McKinlay and B. L. Diffey, A reference action spectrum for ultra-violet induced erythema in human skin, in Human Exposure to Ultraviolet Radiation: Risks and Regulations. International Congress Series, ed. W. F. Passchier and B. F. M. Bosnjakovich, Elsevier, Amsterdam, 1987, pp. 83–87.

    Google Scholar 

  4. R. R. Cordero, G. Seckmeyer, D. Pissulla and F. Labbe, Uncertainty of experimental integrals: application to the UV index calculation, Metrologia, 2008, 45, 1–10.

    Article  Google Scholar 

  5. WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52, Geneva, Switzerland, 2011, 516 pp.

    Google Scholar 

  6. R. L. McKenzie, G. E. Bodeker, G. Scott and J. Slusser, Geographical differences in erythemally-weighted UV measured at mid-latitude USDA sites, Photochem. Photobiol. Sci., 2006, 5 3, 343–352.

    Article  CAS  PubMed  Google Scholar 

  7. Q. L. Kleipool, M. R. Dobber, J. F. de Haan and P. F. Levelt, Earth surface reflectance climatology from 3 years of OMI data, J. Geophys. Res., 2008, 113, D18308, DOI: 10.1029/2008JD010290.

    Article  Google Scholar 

  8. C. Toledano, M. Wiegner, M. Garhammer, M. Seefeldner, J. Gasteiger, D. Müller and P. Koepke, Spectral aerosol optical depth characterization of desert dust during SAMUM 2006, Tellus Ser. B, 2009, 61 1, 216–228.

    Article  Google Scholar 

  9. J. Xin, Y. Wang, Z. Li, P. Wang, W. M. Hao, B. L. Nordgren, S. Wang, G. Liu, L. Wang, T. Wen, Y. Sun and B. Hu, Aerosol optical depth (AOD) and Ångström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005, J. Geophys. Res., 2007, 112 D5, D05203.

    Article  Google Scholar 

  10. L. L. Stowe, E. P. McClain, R. Carey, P. Pellegrino, G. G. Gutman, P. Davis and S. Hart, Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data, Adv. Space Res., 1991, 11 3, 51–54.

    Article  Google Scholar 

  11. N. Fournier, P. Stammes, M. De Graaf, M. Van Der Graaf, A. Piters, M. Grzegorski and M. A. Kokhanovsky, Improving cloud information over deserts from SCIAMACHY Oxygen A-band measurements, Atmos. Chem. Phys., 2006, 6 1, 163–172.

    Article  CAS  Google Scholar 

  12. G. Bernhard, C. R. Booth and J. C. Ehramjian, UV climatology at Palmer Station, Antarctica, in Ultraviolet Ground- and Space-based Measurements, Models, and Effects V, ed. G. Bernhard, J. R. Slusser, J. R. Herman and W. Gao, Proceedings of SPIE, 2005, pp. 588607–1–588607–12.

    Chapter  Google Scholar 

  13. R. R. Cordero, A. Damiani, G. Seckmeyer, S. Riechelmann, D. Laroze, F. Garate and F. Labbe, Satellite-derived UV Climatology at Escudero Station (Antarctic Peninsula), Antarctic Sci., 2013, DOI: 10.1017/S0954102013000175.

    Google Scholar 

  14. R. D. Piacentini, G. M. Salum, N. Fraidenraich and C. Tiba, Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil, Renewable Energy, 2011, 36 1, 409–412.

    Article  Google Scholar 

  15. R. D. Piacentini, A. Cede, H. Bárcena, Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic Plateau Puna of Atacama (Argentina), J. Atmos. Solar-Terre. Phys., 2003, 65 6, 727–731.

    Article  Google Scholar 

  16. H. Schwander, P. Koepke, A. Kaifel and G. Seckmeyer, Modification of spectral UV irradiance by clouds, J. Geophys. Res., 2002, 107 D16, 4296.

    Article  Google Scholar 

  17. F. M. Mims and J. E. Frederick, Cumulus clouds and UV-B, Nature, 1994, 371, 291.

    Article  Google Scholar 

  18. B. A. Bodhaine, E. G. Dutton, D. J. Hofmann, R. L. McKenzie and P. V. Johnston, UV measurements at Mauna Loa: July 1995 to July 1996, J. Geophys. Res., 1997, 102, 19265–19273.

    Article  CAS  Google Scholar 

  19. A. Dahlback, N. Gelsor, J. J. Stamnes and Y. Gjessing, UV measurements in the 3000–5000 m altitude region in Tibet, J. Geophys. Res., 2007, 112, D09308, DOI: 10.1029/2006JD007700.

    Google Scholar 

  20. A. Damiani, S. Cabrera, R. C. Muñoz, R. R. Cordero and F. Labbe, Satellite-derived UV irradiance for a region with complex morphology and meteorology: comparison against ground measurements in Santiago de Chile, Int. J. Remote Sens., 2013, 34 16, 5812–5833.

    Article  Google Scholar 

  21. S. Cabrera, A. Ipiña, A. Damiani, R. R. Cordero and R. D. Piacentini, UV index values and trends in Santiago, Chile (33.5° S) based on ground and satellite data, J. Photochem. Photobiol., B, 2012, 115, 73–84.

    Article  CAS  PubMed  Google Scholar 

  22. A. Tanskanen, N. A. Krotkov, J. R. Herman and A. Arola, Surface ultraviolet irradiance from OMI, IEEE Trans. Geosci. Remote, 2006, 44 5, 1267–1271.

    Article  Google Scholar 

  23. A. Tanskanen, A. Lindfors, A. Määttä, N. Krotkov, J. Herman, J. Kaurola, T. Koskela, K. Lakkala, V. Fioletov, G. Bernhard, R. McKenzie, Y. Kondo, M. O’Neill, H. Slaper, P. Den Outer, A. F. Bais and J. Tamminen, Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data, J. Geophys. Res., 2007, 112, D24S44, DOI: 10.1029/2007JD008830.

    Google Scholar 

  24. P. Weihs, M. Blumthaler, H. E. Rieder, A. Kreuter, S. Simic, W. Laube, A. W. Schmalwieser, J. E. Wagner and A. Tanskanen, Measurements of UV irradiance within the area of one satellite pixel, Atmos. Chem. Phys., 2008, 8, 5615–5626.

    Article  CAS  Google Scholar 

  25. S. Kazadzis, A. Bais, D. Balis, N. Kouremeti, M. Zempila, A. Arola, E. Giannakaki, V. Amiridis and A. Kazantzidis, Spatial and temporal UV irradiance and aerosol variability within the area of an OMI satellite pixel, Atmos. Chem. Phys., 2009, 9, 4593–4601.

    Article  CAS  Google Scholar 

  26. S. Kazadzis, A. Bais, A. Arola, N. Krotkov, N. Kouremeti and C. Meleti, Ozone Monitoring Instrument spectral UV irradiance products: comparison with ground based measurements at an urban environment, Atmos. Chem. Phys., 2009, 9, 585–594.

    Article  CAS  Google Scholar 

  27. I. Ialongo, G. R. Casale and A. M. Siani, Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station, Atmos. Chem. Phys., 2008, 8, 3283–3289, DOI: 10.5194/acp-8-3283-2008.

    Article  CAS  Google Scholar 

  28. I. Ialongo, V. Buchard, C. Brogniez, G. R. Casale and A. M. Siani, Aerosol Single Scattering Albedo retrieval in the UV range: an application to OMI satellite validation, Atmos. Chem. Phys. Discuss., 2009, 9, 19009–19033.

    Google Scholar 

  29. V. Buchard, C. Brogniez, F. Auriol, B. Bonnel, J. Lenoble, A. Tanskanen, B. Bojkov and P. Veefkind, Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites, Atmos. Chem. Phys., 2008, 8, 4517–4528.

    Article  CAS  Google Scholar 

  30. A. Oyanadel, D. Painemal, J. F. Leon, I. Chiapello and L. Gallardo, Aerosol Loading Over Santiago De Chile (33°.3′s 70°.5′w, 500 M.A.S.L.): A Comparison Between Satellite and in Situ Measurements, Proceedings of 8 ICSHMO, INPE 149-155, 2006.

    Google Scholar 

  31. L. A. Remer, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. Martins and B. N. Holben, The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 2005, 62 4, 947–973.

    Article  Google Scholar 

  32. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak and A. Smirnov, AERONET-A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 1998, 66, 1–16.

    Article  Google Scholar 

  33. S. Wuttke, G. Seckmeyer, G. Bernhard, J. Ehramjian, R. McKenzie, P. Johnston, M. O’Neill, New spectroradiometers complying with the NDSC standards, J. Atmos. Ocean. Technol., 2006, 23 2, 241–251.

    Article  Google Scholar 

  34. G. Seckmeyer, A. F. Bais, G. Bernhard, M. Blumthaler, P. Eriksen, R. L. McKenzie, C. Roy and M. Miyauchi, Instruments to Measure Solar Ultraviolet Radiation, Part I: Spectral Instruments, Tech. Rep., 2001, 30, 12.

    Google Scholar 

  35. A. Cede, J. Herman, A. Richter, N. Krotkov and J. Burrows, Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct sun mode, J. Geophys. Res., 2006, 111 D5, D05304.

    Google Scholar 

  36. G. Bernhard and G. Seckmeyer, Uncertainty of measurements of spectral solar UV irradiance, J. Geophys. Res., 1999, 104, 14321–14345.

    Article  Google Scholar 

  37. R. R. Cordero, G. Seckmeyer, D. Pissulla, L. DaSilva and F. Labbe, Uncertainty evaluation of spectral UV irradiance measurements, Meas. Sci. Technol., 2008, 19 045104, 1–15.

    Google Scholar 

  38. J. Badosa, R. L. McKenzie, M. Kotkamp, J. Calbó, J. A. González, P. V. Johnston, M. O’Neill and D. J. Anderson, Towards closure between measured and modelled UV under clear skies at four diverse sites, Atmos. Chem. Phys., 2007, 7, 2817–2837.

    Article  CAS  Google Scholar 

  39. S. K. Satheesh, J. Srinivasan, V. Vinoj and S. Chandra, New Directions: How representative are aerosol radiative impact assessments?, Atmos. Environ., 2006, 40 16, 3008–3010.

    Article  CAS  Google Scholar 

  40. B. Mayer, G. Seckmeyer and A. Kylling, Systematic longterm comparison of spectral UV measurements and UVSPEC modeling results, J. Geophys. Res., 1997, 102 D7, 8755–8767.

    Article  CAS  Google Scholar 

  41. J. Gröbner, M. Blumthaler, S. Kazadzis, A. Bais, A. Webb, J. Schreder, G. Seckmeyer and D. Rembges, Quality assurance of spectral solar UV measurements: result from 25 UV monitoring sites in Europe, 2002 to 2004, Metrologia, 2006, 43, S66–S71.

    Article  Google Scholar 

  42. J. Gröbner, G. Hülsen, L. Vuilleumier, M. Blumthaler, J. M. Vilaplana, D. Walker and J. E. Gill, Report of the PMOD/WRC-COST calibration and intercomparison of erythemal radiometers, 2007.

    Google Scholar 

  43. D. Balis, M. Kroon, M. E. Koukouli, E. J. Brinksma, G. Labow, J. P. Veefkind, R. D. McPeters, Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 2007, 112, D24S46, DOI: 10.1029/2007JD008796.

    Google Scholar 

  44. R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia and P. F. Levelt, Validation of the Aura Ozone Monitoring Instrument total column ozone product, J. Geophys. Res., 2008, 113, D15S14, DOI: 10.1029/2007JD008802.

    Article  Google Scholar 

  45. A. Damiani, S. De Simone, C. Rafanelli, R. R. Cordero and M. Laurenza, Three years of ground-based total ozone measurements in Arctic: comparison with OMI, GOME and SCIAMACHY satellite data, Remote Sens. Environ., 2012, DOI: 10.1016/j.rse.2012.08.023.

    Google Scholar 

  46. T. Martin, B. Gardiner and G. Seckmeyer, Uncertainties in satellite-derived estimates of surface UV doses, J. Geophys. Res., 2001, 105, 27005–27012.

    Article  Google Scholar 

  47. M. Antón, V. E. Cachorro, J. M. Vilaplana, C. Toledano, N. A. Krotkov, A. Arola, A. Serrano, B. de la Morena, Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain)–Part 1: Analysis of parameter influence, Atmos. Chem. Phys., 2010, 10, 5979–5989.

    Article  Google Scholar 

  48. E. T. Gary and K. Stamnes, Radiative transfer in the atmosphere and ocean, Cambridge University Press, Cambridge, New York, 1999, 517 p.

    Google Scholar 

  49. R. R. Cordero, G. Seckmeyer, D. Pissulla, L. DaSilva and F. Labbe, Uncertainty evaluation of the spectral UV irradiance evaluated by using the UVSPEC Radiative Transfer Model, Opt. Commun., 2007, 276, 44–53.

    Article  CAS  Google Scholar 

  50. A. Tanskanen, Lambertian surface albedo climatology at 360 nm from TOMS data using moving time-window technique, in Proceedings of the XX Quadrennial Ozone Symposium, 1–8 June 2004, Kos, Greece, 2004.

    Google Scholar 

  51. P. Weihs, S. Stana, L. Wolfgang, M. Wieslaw, R. Govindaraj and M. Michael, Albedo Influences on Surface UV Irradiance at the Sonnblick High-Mountain Observatory (3106-m Altitude), J. Appl. Meteor., 1999, 38, 1599–1610.

    Article  Google Scholar 

  52. B. Mayer, A. Kylling, U. Hamann and C. Emde, Comparison of Measured and Modelled Uv Spectral Irradiance at the Izaña Station Based On Libradtran and UVA-Goa Models, 37th Annual European Meeting on Atmospheric Studies by Optical Methods. Valladolid 23–26 August 2010.

    Google Scholar 

  53. R. R. Cordero, G. Seckmeyer, D. Pissulla and F. Labbe, Exploitation of Spectral Direct UV Irradiance Measurements, Metrologia, 2009, 46, 19–25.

    Article  CAS  Google Scholar 

  54. A. F. Bais, A. Kazantzidis, S. Kazadzis, D. S. Balis, C. S. Zerefos and C. Meleti, Deriving an effective aerosol single scattering albedo from spectral surface UV irradiance measurements, Atmos. Environ., 2005, 39 6, 1093–1102.

    Article  CAS  Google Scholar 

  55. V. Buchard, C. Brogniez, F. Auriol and B. Bonnel, Aerosol single scattering albedo retrieved from ground-based measurements in the UV and visible region, Atmos. Meas. Tech., 2011, 4, 1–7.

    Article  Google Scholar 

  56. B. Mayer and A. Kylling, Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 2005, 5, 1855–1877, DOI: 10.5194/acp-5-1855-2005.

    Article  CAS  Google Scholar 

  57. A. Dahlback and K. Stamnes, A new spherical model for computing the radiation field available for photolysis and heating at twilight, Planet Space Sci., 1991, 39, 671–683.

    Article  Google Scholar 

  58. C. A. Gueymard, The sun’s total and spectral irradiance for solar energy applications and solar radiation models, Sol. Energy, 2004, 76, 423–453.

    Article  Google Scholar 

  59. K. Stamnes, J. Slusser and M. Bowen, Derivation of Total Ozone Abundance and Cloud Effects from Spectral Irradiance Measurements, Appl. Opt., 1991, 30, 4418–4426.

    Article  CAS  PubMed  Google Scholar 

  60. B. Mayer, A. Kylling, S. Madronich and G. Seckmeyer, Enhanced absorption of UV radiation due to multiple scattering in clouds: experimental evidence and theoretical explanation, J. Geophys. Res., 1998, 103 D23, 31241–31254.

    Article  CAS  Google Scholar 

  61. M. T. Pfeifer, P. Koepke and J. Reuder, Effects of altitude and aerosol on UV radiation, J. Geophys. Res., 2006, 111, DO1203, DOI: 10.1029/2005JD006444.

    Article  Google Scholar 

  62. R. L. McKenzie, P. V. Johnston, D. Smale, B. A. Bodhaine and S. Madronich, Altitude effects on UV spectral irradiance deduced from measurements at Lauder, New Zealand, and at Mauna Loa Observatory, Hawaii, J. Geophys. Res., 2001, 106, 22845–22860.

    Article  Google Scholar 

  63. M. Blumthaler, W. Ambach and R. Ellinger, Increase in solar UV radiation with altitude, J. Photochem. Photobiol., B., 1997, 39, 130–134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul R. Cordero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero, R.R., Seckmeyer, G., Damiani, A. et al. The world’s highest levels of surface UV. Photochem Photobiol Sci 13, 70–81 (2014). https://doi.org/10.1039/c3pp50221j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50221j

Navigation