Issue 44, 2013

A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells

Abstract

Multi-wall carbon nanotubes (MWCNTs) were deposited on a titanium (Ti) foil substrate by using electrophoresis, then a nano-corallines nickel sulfide (NiS) was deposited on the MWCNTs by using a pulse potentiostatic method. The high performance NiS/MWCNT/Ti hybrid film was firstly used as a Pt-free counter electrode (CE) in dye-sensitized solar cells (DSSCs). The surface of MWCNTs was wrapped with a nano-corallines NiS thin film of ∼45 nm in thickness. Under full sunlight illumination (100 mW cm−2, AM 1.5 G), DSSCs with a NiS/MWCNT/Ti CE achieved an enhanced photovoltaic conversion efficiency of 7.90%, while DSSCs with a Pt/Ti CE obtained the efficiency of 6.36%. The characterization of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated that nano-corallines NiS had high electrocatalytic activity for I3 reduction, MWCNTs had high specific surface area and low resistance, and the synergistic effect of NiS and MWCNTs endowed the superior features of the hybrid film. Therefore, the NiS/MWCNT/Ti CE can be used as a promising alternative CE in low-cost and large-scale DSSCs.

Graphical abstract: A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2013
Accepted
12 Sep 2013
First published
12 Sep 2013

J. Mater. Chem. A, 2013,1, 13885-13889

A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells

Y. Xiao, J. Wu, J. Lin, G. Yue, J. Lin, M. Huang, Y. Huang, Z. Lan and L. Fan, J. Mater. Chem. A, 2013, 1, 13885 DOI: 10.1039/C3TA12972A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements