Issue 14, 2015

Imaging agents based on lanthanide doped nanoparticles

Abstract

Nanotechnology has recently allowed us to design and prepare nanoplatforms with the potential to face currently unresolved problems. Among these platforms, nanoparticles in particular are versatile objects that find applications in many different areas. In the vast ensemble of materials that have been explored to obtain nanoparticles with improved performances, we here focus our attention on lanthanide-based nanocrystals. These recently developed species are extremely interesting and well known particularly for their ability to emit anti-Stokes shifted light (upconversion) with relatively high brightness. Many advantageous characteristics of such materials are emerging, and their use as multimodal imaging agents is rapidly growing. We here survey some recent examples on this subject, mainly focusing on systems having NIR-to-NIR emission properties for in vivo applications.

Graphical abstract: Imaging agents based on lanthanide doped nanoparticles

Article information

Article type
Review Article
Submitted
12 Mar 2015
First published
19 Jun 2015

Chem. Soc. Rev., 2015,44, 4922-4952

Author version available

Imaging agents based on lanthanide doped nanoparticles

L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini and N. Zaccheroni, Chem. Soc. Rev., 2015, 44, 4922 DOI: 10.1039/C4CS00394B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements