Issue 85, 2014

Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties

Abstract

A new two-step process was developed to prepare PVDF/reduced graphene oxide (PVDF/rGO) composite films: the synthesis of PVDF/GO composite films and immersion of such films in hydrobromic acids for reduction. This method avoided the agglomeration of rGO during reduction in PVDF/GO solutions and efficiently improved the dispersion effect of rGO in the PVDF matrix. Meanwhile, it simplified the preparation process due to no modification of GO being required, and opened a feasible way to scale up the production of PVDF/rGO composites. Experiments showed that PVDF with nearly all β phase was obtained when the content of rGO was 0.1 wt% (PrGO-0.1), and the dielectric constant increased from 10 for the neat PVDF to 41 for PrGO-0.1 at 1 kHz. The ferroelectric, piezoelectric, and dynamic mechanical properties of the PVDF/rGO composites were also comprehensively studied. As the content of the β phase was nearly 100%, the piezoelectric constant and remnant polarization of the PrGO-0.1 film increased by 78.6% and 69.3%, respectively, compared with those of the neat PVDF, and therefore became the highest among all composite films. The rGO also, to a great extent, helped to enhance the mechanical properties of the PVDF composites. As a result, the improved piezoelectric and ferroelectric properties made the PVDF/rGO composite films with 0.1 wt% rGO content much better piezoelectric energy transfer and ferroelectric storage materials than the neat PVDF.

Graphical abstract: Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties

Article information

Article type
Paper
Submitted
21 Jul 2014
Accepted
11 Sep 2014
First published
11 Sep 2014

RSC Adv., 2014,4, 45220-45229

Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties

L. Huang, C. Lu, F. Wang and L. Wang, RSC Adv., 2014, 4, 45220 DOI: 10.1039/C4RA07379G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements