Issue 46, 2015

Investigation of charge transport properties in less defective nanostructured ZnO based Schottky diode

Abstract

In this report the synthesis of novel zinc oxide (ZnO) with a lower defect density and its effect on the Al/ZnO Schottky junction has been demonstrated. The defect density was estimated by positron annihilation lifetime measurement which ensures the material's superiority (i.e. free from point defects or any type of vacancies) over the earlier reported results. The thin film device of synthesized ZnO was fabricated on an ITO coated glass substrate. As the front contact was made by aluminium, the characteristic IV produced rectifying Schottky behavior. The underlying charge transport mechanism through a metal–semiconductor (i.e. Al/ZnO) junction was analyzed on the basis of thermoionic emission theory to find out the quality of the fabricated device. In this regard we have studied the charge transport mechanism by measuring the density of states (DOS) at the Fermi level, mobility-lifetime product and diffusion length.

Graphical abstract: Investigation of charge transport properties in less defective nanostructured ZnO based Schottky diode

Article information

Article type
Paper
Submitted
22 Dec 2014
Accepted
15 Apr 2015
First published
15 Apr 2015

RSC Adv., 2015,5, 36560-36567

Author version available

Investigation of charge transport properties in less defective nanostructured ZnO based Schottky diode

A. Dey, A. Layek, A. Roychowdhury, M. Das, J. Datta, S. Middya, D. Das and P. P. Ray, RSC Adv., 2015, 5, 36560 DOI: 10.1039/C4RA16828C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements