Issue 44, 2014

Bridging and caging in mixed suspensions of microsphere and adsorptive microgel

Abstract

Gelation and glass transition in a mixed suspension of polystyrene (PS) microsphere and poly(N-isopropylacrylamide) (PNIPAM) microgel were studied as a function of the total colloid volume fraction and mixing ratio of these two components. The PNIPAM microgel, which is adsorbable on the PS microsphere surface, can induce bridging or stabilizing effect between microspheres depending on whether the volume fraction of microgel (ΦMG) is smaller or larger than the saturated adsorption concentration (Φ*MG) for a given volume fraction of the microsphere (ΦMS). Φ*MG is in a linear relationship with ΦMS, and the value of ΦMG/Φ*MG can be taken as an approximate measure of surface coverage. A state diagram of gelation and glass transition is constructed with the short-ranged attractive interaction, resulting from the well-defined bridging bonding. Keeping ΦMG/Φ*MG = 0.20 and increasing ΦMS from 0.25 to 0.55, the mixed suspension transforms from a bridging gel into an attractive glass; moreover, while keeping ΦMS = 0.45 and increasing ΦMG/Φ*MG from 0.20 to 1.2, the mixed suspension changes from a bridging gel into an attractive glass, and then to a repulsive glass. The bridging effect and the cage effect can be distinguished by the yielding behaviors in rheological measurements. In the nonlinear dynamic rheological experiments, one-step yielding, corresponding to the disconnecting of bridge network, is observed in the bridging gel, and one-step yielding, corresponding to the breaking of cage, is observed in the repulsive glass. However, a two-step yielding behavior is found in the bridging-induced attractive glass, which is attributed to the bridging effect of microgels and the caging effect of the dense environment.

Graphical abstract: Bridging and caging in mixed suspensions of microsphere and adsorptive microgel

Article information

Article type
Paper
Submitted
14 Aug 2014
Accepted
09 Sep 2014
First published
10 Sep 2014

Soft Matter, 2014,10, 8905-8912

Author version available

Bridging and caging in mixed suspensions of microsphere and adsorptive microgel

C. Zhao, G. Yuan and C. C. Han, Soft Matter, 2014, 10, 8905 DOI: 10.1039/C4SM01798F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements