Issue 39, 2014

Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity

Abstract

Dielectric elastomer actuators (DEAs) can lead to surprisingly large deformations by applying an electric field. The biggest challenge for DEAs is to get a large actuated strain at a low electric field. Herein, a novel approach was used to largely improve the actuated strain at a low electric field of a thermoplastic polyurethane (TPU) dielectric elastomer (DE) by introducing polyethylene glycol (PEG) oligomer into the matrix. The dielectric constant (εr) of TPU was obviously increased by adding PEG due to the combined effect of the increase in the interfacial polarization ability of TPU/PEG blends by the ionic conductivity of PEG and the increase in dipole polarization ability of TPU chain segments by the disruption of hydrogen bonds of TPU chains. Meanwhile, the elastic modulus (Y) of TPU was obviously decreased due to the plasticizing effect of PEG on TPU. The simultaneous increase in εr and decrease in Y resulted in a 7500% increase in actuated strain at a low electric field (3 V μm−1) by adding PEG. The actuated strain (5.22% at 3 V μm−1) is considerably higher than that of other DEs at the same electric field reported in the literatures. Our work provides a simple and effective method to largely improve the actuated strain at a low electric field of a DE, facilitating the application of DE in biological and medical fields.

Graphical abstract: Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity

Article information

Article type
Paper
Submitted
31 May 2014
Accepted
14 Aug 2014
First published
14 Aug 2014

J. Mater. Chem. C, 2014,2, 8388-8397

Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity

M. Tian, B. Yan, Y. Yao, L. Zhang, T. Nishi and N. Ning, J. Mater. Chem. C, 2014, 2, 8388 DOI: 10.1039/C4TC01140F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements