Issue 23, 2015

Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles

Abstract

The actual role of transition metals like iron in the room temperature ferromagnetism (RTFM) of Fe doped ZnO nanoparticles is still an unsolved problem. While some studies concluded that the Fe ions participate in the magnetic interaction, others in contrast do not believe Fe to play a direct role in the magnetic exchange interaction. To contribute to the understanding of this issue, we have carefully investigated the structural, optical, vibrational and magnetic properties of sol–gel synthesized Zn1−xFexO (0 < x < 0.10) nanoparticles. No Fe2+ was detected in any sample. We found that high spin Fe3+ ions are substitutionally incorporated at the Zn2+ in the tetrahedral-core sites and in pseudo-octahedral surface sites in ZnO. Superficial OH was observed in all samples. For x ≤ 0.03, an increment in Fe doping concentration decreased a and c lattice parameters, average Zn–O bond length, average crystallite size and band gap; while it increased the degree of distortion and quadrupole splitting. Undoped ZnO nanoparticles exhibited very weak RTFM with a saturation magnetization (Ms) of ∼0.47 memu g−1 and this value increased to ∼2.1 memu g−1 for Zn0.99Fe0.01O. Very interestingly, the Ms for Zn0.99Fe0.01O and Zn0.97Fe0.03O increased by a factor of about ∼2.3 by increasing annealing for 1 h to 3 h. For x ≥ 0.05, ferrimagnetic disordered spinel ZnFe2O4 was formed and this phase was found to become more ordered with increasing annealing time. Fe does not contribute directly to the RTFM, but its presence promoted the formation of additional single charged oxygen vacancies, zinc vacancies, and more oxygen-ended polar terminations at the nanoparticle surface. These defects, which are mainly superficial, altered the electronic structure and are considered as the main sources of the observed ferromagnetism.

Graphical abstract: Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles

Article information

Article type
Paper
Submitted
10 Mar 2015
Accepted
01 May 2015
First published
01 May 2015

Phys. Chem. Chem. Phys., 2015,17, 15284-15296

Author version available

Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles

J. J. Beltrán, C. A. Barrero and A. Punnoose, Phys. Chem. Chem. Phys., 2015, 17, 15284 DOI: 10.1039/C5CP01408E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements