Issue 28, 2015

Concurrent ordering and phase transformation in SmCo7 nanograins

Abstract

Sm–Co alloys with the stabilized SmCo7 phase are most prominent candidates for advanced high temperature permanent magnets, where the stabilization of the SmCo7 phase can be effectuated by nanostructuring. The complex concurrent processes of ordering and phase transformation in a SmCo7 nanograin are characterized on the atomic scale. For the first time early stages of the phase transformation are made visible by highlighting specific superstructures in single nanograins using Fourier reconstruction of high-resolution transmission electron microscopy images. The superstructures are only detectable and can only be distinguished in specific crystallographic orientations. The evolution of the atom arrangement in the crystal structures is demonstrated for the concurrent ordering process and phase transformation. During decomposition of the metastable SmCo7 phase, the hexagonal Sm2Co17 superstructure (2:17H) forms at first as a precursor of the rhombohedral Sm2Co17 superstructure (2:17R) – this can only be detected by analysis of individual grains and has not been described so far. By extensive crystallographic analysis of individual nanograins, a distinct correlation between the fraction of the superstructure phases and the grain size is found, showing directly and unambiguously the grain size dependence of the phase transformation in the nanocrystalline alloy, a phenomenon that so far has only been shown indirectly using volume averaging methods.

Graphical abstract: Concurrent ordering and phase transformation in SmCo7 nanograins

Article information

Article type
Paper
Submitted
21 Apr 2015
Accepted
11 Jun 2015
First published
15 Jun 2015

Nanoscale, 2015,7, 12126-12132

Author version available

Concurrent ordering and phase transformation in SmCo7 nanograins

M. Seyring, X. Song, Z. Zhang and M. Rettenmayr, Nanoscale, 2015, 7, 12126 DOI: 10.1039/C5NR02592C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements