Issue 9, 2016

Microstructure, electrical properties and temperature stability in Bi0.5Na0.5Zr0.95Ce0.05O3 modified R–T phase boundary of potassium-sodium niobium lead-free ceramics

Abstract

(1 − x)K0.48Na0.52Nb0.95Sb0.05O3xBi0.5Na0.5Zr0.95Ce0.05O3 [(1 − x)KNNS–xBNZC] lead-free piezoelectric ceramics, with doping ratio of x ranging from 0 to 0.05, were synthesized by the conventional solid state sintering method. The phase transition behavior, microstructure and piezoelectric properties of (1 − x)KNNS–xBNZC ceramics were systematically investigated using XRD, SEM, and other devices with different doping amounts of BNZC. It was found that the piezoelectric properties of (1 − x)KNNS–xBNZC ceramics were improved obviously by adding the proper doping amount, 0.03 < x < 0.04, due to the coexistence of rhombohedral and tetragonal phases in the ceramics near room temperature. The piezoelectric constant d33 of the ceramics first increased and then decreased when increasing the doping amount. A remarkably strong piezoelectricity was obtained in ceramics with a ∼441 pC N−1 peak d33 value. The excellent piezoelectric properties of (1 − x)KNNS–xBNZC ceramics with x = 0.034 were obtained: d33 = 441 pC N−1, kp = 0.44, Qm = 31, εr = 2447, tan δ = 0.037, TC = 215 °C, Pr = 15.7 μC cm−2 and EC = 8.2 kV cm−1. With the annealing temperature reaching 250 °C, the d33 values of the ceramics were still greater than 330 pC N−1, which represents good temperature stability for the piezoelectric property. It is believed that such a material system is a very promising candidate for lead-free piezoelectric ceramics.

Graphical abstract: Microstructure, electrical properties and temperature stability in Bi0.5Na0.5Zr0.95Ce0.05O3 modified R–T phase boundary of potassium-sodium niobium lead-free ceramics

Article information

Article type
Paper
Submitted
03 Nov 2015
Accepted
23 Dec 2015
First published
04 Jan 2016

RSC Adv., 2016,6, 6983-6989

Author version available

Microstructure, electrical properties and temperature stability in Bi0.5Na0.5Zr0.95Ce0.05O3 modified R–T phase boundary of potassium-sodium niobium lead-free ceramics

Z. Tan, J. Xing, L. Jiang, L. Sun, J. Wu, W. Zhang, D. Xiao and J. Zhu, RSC Adv., 2016, 6, 6983 DOI: 10.1039/C5RA23075F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements