Issue 28, 2016

Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors

Abstract

Vertical standing graphene sheets are highly desirable in energy storage applications because without π–π stacking their surface can be fully utilized. In this work, vertical graphene nanosheets (VGS) are successfully synthesized on nickel foam via a simple plasma enhanced chemical vapor deposition (PECVD) technique. Instead of hazardous and costly hydrocarbon gases, we adopt a green approach by using a low-cost, non-toxic, sustainable and environmentally-friendly natural organic material, M. alternifolia essential oil (containing a hydrocarbon monomer), as the precursor. The 4 minute deposition duration results in multilayered horizontal graphene (h-GS) with sparsely distributed vertical graphene while 16 minute deposition leads to fully covered vertical graphene nanosheets (f-VGS). To demonstrate their application as a conductive and high-surface-area substrate in energy storage, MnO2 thin films are hydrothermal grown to form MnO2@f-VGS core–shell structure and MnO2@h-GS. The core@shell electrode of MnO2@f-VGS demonstrates a significantly higher specific capacitance of 203 F g−1 at a current density of 10 A g−1 compared to that of 82 F g−1 at 10 A g−1 shown by MnO2@h-GS. Moreover, the assembled full supercapacitors containing MnO2@f-VGS‖active carbon as electrodes can deliver a reasonably high specific capacitance of 250 F g−1 at 2 A g−1. Such f-VGS may have application also in battery and fuel cell electrodes.

Graphical abstract: Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors

Article information

Article type
Paper
Submitted
18 Dec 2015
Accepted
23 Feb 2016
First published
25 Feb 2016

RSC Adv., 2016,6, 23968-23973

Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors

B. Ouyang, Y. Zhang, Z. Zhang, H. J. Fan and R. S. Rawat, RSC Adv., 2016, 6, 23968 DOI: 10.1039/C5RA27084G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements