Issue 24, 2016

Luminescence mechanisms of defective ZnO nanoparticles

Abstract

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Raman mode at 565 cm−1 associated with oxygen vacancies, accompanied by a decrease of defect-related emission at 2.2 eV. Based on our experimental results the emission at 2.2 eV is proposed to originate from a photo-generated hole in the valence band recombining with an electron deeply trapped in a singly ionized oxygen vacancy. This investigation clarifies important aspects of the photophysics of ZnO NPs and indicates that ZnO emission can be controlled by thermal annealing, which is important in view of optoelectronic applications.

Graphical abstract: Luminescence mechanisms of defective ZnO nanoparticles

Article information

Article type
Paper
Submitted
04 Mar 2016
Accepted
18 May 2016
First published
20 May 2016

Phys. Chem. Chem. Phys., 2016,18, 16237-16244

Luminescence mechanisms of defective ZnO nanoparticles

P. Camarda, F. Messina, L. Vaccaro, S. Agnello, G. Buscarino, R. Schneider, R. Popescu, D. Gerthsen, R. Lorenzi, F. M. Gelardi and M. Cannas, Phys. Chem. Chem. Phys., 2016, 18, 16237 DOI: 10.1039/C6CP01513A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements