Issue 19, 2016

In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes

Abstract

We demonstrate two novel methods for the measurement of the temperatures of reaction spaces locally heated by microwaves, which have been applied here to two example systems, i.e., BaTiO3 particles covered with a SiO2 shell (BaTiO3–SiO2) and layered tungstate particles. Photoluminescent (PL) probes showing the temperature-sensitivity in their PL lifetimes are located in the nanospaces of the above systems. In the case of BaTiO3–SiO2 core–shell particles, rhodamine B is loaded into the mesopores of the SiO2 shell covering the BaTiO3 core, which generates the heat through the dielectric loss of microwaves. The inner nanospace temperature of the SiO2 shell is determined to be 28 °C higher than the bulk temperature under microwave irradiation at 24 W. On the other hand, Eu3+ is immobilized in the interlayer space of layered tungstate as the PL probe, showing that the nanospace temperature of the interlayer is only 4 °C higher than the bulk temperature. This method for temperature-measurement is powerful for controlling microwave heating and elucidates the ambiguous mechanisms of microwave special effects often observed in chemical reactions, contributing greatly to the practical application of microwaves in chemistry and materials sciences.

Graphical abstract: In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes

Supplementary files

Article information

Article type
Communication
Submitted
28 Mar 2016
Accepted
25 Apr 2016
First published
25 Apr 2016
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2016,18, 13173-13179

In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes

T. Ano, F. Kishimoto, R. Sasaki, S. Tsubaki, M. M. Maitani, E. Suzuki and Y. Wada, Phys. Chem. Chem. Phys., 2016, 18, 13173 DOI: 10.1039/C6CP02034H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements