Issue 39, 2016

Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance

Abstract

Graphitic C3N4/ultrathin MoS2 (MoS2/g-C3N4) hybrids were synthesized via a facile bathing and ultrasound method. In this process, a well-bonded interface structure was formed between ultrathin MoS2 nanosheets and g-C3N4 through adjusting the amount of MoS2 in the MoS2/g-C3N4 hybrids. The MoS2/g-C3N4 hybrids were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), transmission electron microscopy (TEM) and UV-vis spectroscopy (UV-vis). The MoS2/g-C3N4 photocatalyst showed excellent photocatalytic activity in the photodegradation of organic pollutants. In this work, methyl orange (MO) was used as the simulative pollutant; the highest photodegradation rate (92.4%) was obtained when the amount of MoS2 was 5 wt% in the MoS2/g-C3N4 hybrids (0.05-MC), with a kinetic constant of 0.0189 min−1 after being irradiated under visible light for 2 h. Besides, 0.05-MC also showed excellent recyclability and chemical stability, and a photodegradation rate of 79.93% was reached after being reused 10 times. For practical pollutants, the photocatalytic degradation rates of ciprofloxacin (CIP) and tetracycline hydrochloride (TC) have been increased dramatically under the visible light irradiation. The excellent photocatalytic properties of MoS2/g-C3N4 hybrids can be ascribed to the enhanced separation rate and accelerated mobility of photogenerated charges through ultrathin MoS2 nanosheets’ modification.

Graphical abstract: Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance

Supplementary files

Article information

Article type
Paper
Submitted
06 Jun 2016
Accepted
22 Aug 2016
First published
23 Aug 2016

Dalton Trans., 2016,45, 15406-15414

Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance

X. Lu, Y. Jin, X. Zhang, G. Xu, D. Wang, J. Lv, Z. Zheng and Y. Wu, Dalton Trans., 2016, 45, 15406 DOI: 10.1039/C6DT02247B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements