Issue 71, 2016

Incorporation of graphene into silica-based aerogels and application for water remediation

Abstract

Graphene/silica nanocomposites in the form of highly porous aerogels are obtained for the first time by integrating a novel approach for the production of low defectivity graphene with a two-step route for the synthesis of a silica-based monolith. Different from the other synthetic methods, the use of co-gelation of a dispersed phase and matrix followed by high temperature supercritical drying leads to well dispersed bilayered graphene inside a high surface area silica matrix with an open texture porosity. Physico-chemical characterization provides evidence that the developed graphene/SiO2 bulk aerogel nanocomposites combine the distinct features of both the dispersed graphene sheets and the porous silica aerogel matrix. It was found that incorporation of graphene in the aerogel, even at low loading, increases significantly the hydrophobic behaviour of the materials. This, combined with the high surface/volume ratio of the aerogel, makes the resulting nanocomposite a suitable candidate as a novel oil sorbent for water remediation. In particular, the developed graphene/silica aerogels selectively and quickly uptake oil, up to more than 7 times the aerogel sorbent mass, from oil–water mixtures, and keeps floating on water after absorbing the oil phase. The suitability of the developed composites as a class of novel sorbents for environmental remediation in the occurrence of flammable liquid spills, where burning represents a major threat, is supported by the specific features of silica aerogels such as a relative fire-resistance, in addition to the high porosity and hydrophobic nature.

Graphical abstract: Incorporation of graphene into silica-based aerogels and application for water remediation

Supplementary files

Article information

Article type
Paper
Submitted
13 Apr 2016
Accepted
30 Jun 2016
First published
04 Jul 2016
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2016,6, 66516-66523

Incorporation of graphene into silica-based aerogels and application for water remediation

D. Loche, L. Malfatti, D. Carboni, V. Alzari, A. Mariani and M. F. Casula, RSC Adv., 2016, 6, 66516 DOI: 10.1039/C6RA09618B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements