Issue 9, 2017

MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors

Abstract

It is highly desirable to develop asymmetric supercapacitors (ASCs) with high energy density while maintaining high power density and long cycle life. In view of this, various carbon and pseudocapacitor materials have often been introduced to form nanocomposite electrodes. But, until now, an energy density of ASCs over 40 W h kg−1 at high power density has been a big issue. How to make the cathode and anode have high and comparable specific capacitance is crucial to obtain high energy density for practical application of ASCs. Herein, we report a hybrid 3D graphene/Ni foam (HGNF)-based MnO2/HGNF//polyaniline (PANI)/HGNF ASC, which was prepared by in situ electrochemical techniques. The cathode MnO2/HGNF and the anode PANI/HGNF provide high specific capacities of 480.0 and 478.8 F g−1 at 1.0 A g−1 respectively, which are highly comparable for ASCs. The MnO2/HGNF//PANI/HGNF ASC provides an excellent energy density of 41.0 W h kg−1 at 787.3 W kg−1. The reasons can be attributed to its 3D hybrid porous structure with fast electron and ion transfer rates and comparably high specific capacitances of both electrode materials, which can show both electrochemical double-layer capacitance and pseudocapacitance behaviors.

Graphical abstract: MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2016
Accepted
06 Feb 2017
First published
06 Feb 2017

J. Mater. Chem. A, 2017,5, 4629-4637

MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors

L. Wu, L. Hao, B. Pang, G. Wang, Y. Zhang and X. Li, J. Mater. Chem. A, 2017, 5, 4629 DOI: 10.1039/C6TA10757E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements