Issue 15, 2017

Fe2O3/Al2O3 microboxes for efficient removal of heavy metal ions

Abstract

Iron oxide/aluminum oxide microboxes (Fe2O3/Al2O3 MBs) with cubic structures (1 ± 0.09 μm) possessing large specific surface area (208.3 m2 g−1) and high adsorption capacity (216 mg g−1) were prepared and utilized for the removal of mercury (Hg2+) (100 ppm) from various samples, including tap water, lake water and tomato juice, with efficiencies of 98.2 ± 0.4, 98.5 ± 0.3 and 97.1 ± 0.5%, respectively. The Fe2O3/Al2O3 MBs are stable, allowing the adsorbed metal species to be removed from their surfaces with 2 M HCl. The Fe2O3/Al2O3 MBs can be reused up to five times after being treated with 2 M HCl. Furthermore, the Fe2O3/Al2O3 MBs are efficient adsorbents for the removal of four metal ions such as Hg2+, cadmium (Cd2+), copper (Cu2+), and lead (Pb2+) ions from soil samples, mainly because of a synergetic effect provided by the two metal oxides and high surface area. This low-cost, effective, and stable Fe2O3/Al2O3 adsorbent holds great potential for the removal of Hg2+ and other heavy metal ions from contaminated sources such as water and soil.

Graphical abstract: Fe2O3/Al2O3 microboxes for efficient removal of heavy metal ions

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2017
Accepted
08 Jun 2017
First published
08 Jun 2017

New J. Chem., 2017,41, 7751-7757

Fe2O3/Al2O3 microboxes for efficient removal of heavy metal ions

R. Ravindranath, P. Roy, A. P. Periasamy, Y. Chen, C. Liang and H. Chang, New J. Chem., 2017, 41, 7751 DOI: 10.1039/C7NJ00431A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements