Issue 6, 2019

Amorphous Fe/Mn bimetal–organic frameworks: outer and inner structural designs for efficient arsenic(iii) removal

Abstract

Highly efficient decontamination of naturally occurring As(III) from aqueous media remains a rigorous task for public health and ecosystem protection. As its increasingly acute toxicity and mobile characteristics than those of As(V), it is imperative to exploit a technique for the simultaneous removal and detoxication of As(III). Herein, a novel strategy involving outer and inner structural engineering of an amorphous FeMn-MOF-74 adsorbent was developed via a facile temperature-controlled crystallization method, which integrated the inner amorphous structure with low-coordinated active centers and the outer optimized metal atomic ratio with homogeneous adsorption/oxidation sites for generating the synergistic effects of As(III) removal. An appropriate Fe/Mn ratio (∼1.96) with optimized temperature (denoted as aFMM-120) endows the synergic effect of iron and high-valence manganese nodes in the framework with the highest experimental adsorption capacity of 161.6 mg g−1 among MOF-based arsenic adsorbents. Detailed characterizations through X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy demonstrated the redox behavior of Mn species and surface coordination of oxygen molecules in FeO clusters toward As(III). All these results imply that amorphous aFMM-120 is an effective adsorptive oxidation material for efficient arsenic-contaminated water remediation.

Graphical abstract: Amorphous Fe/Mn bimetal–organic frameworks: outer and inner structural designs for efficient arsenic(iii) removal

Supplementary files

Article information

Article type
Paper
Submitted
29 Oct 2018
Accepted
07 Jan 2019
First published
08 Jan 2019

J. Mater. Chem. A, 2019,7, 2845-2854

Amorphous Fe/Mn bimetal–organic frameworks: outer and inner structural designs for efficient arsenic(III) removal

T. Zhang, J. Wang, W. Zhang, C. Yang, L. Zhang, W. Zhu, J. Sun, G. Li, T. Li and J. Wang, J. Mater. Chem. A, 2019, 7, 2845 DOI: 10.1039/C8TA10394A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements